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Foreword 

It is now more than fifty years since the first paper on formal specifications 
of an information system was published by Young and Kent. Even if the 
term “conceptual model” was not used at that time, the basic intention of 
the abstract specification was to a large extent the same as for developing 
conceptual models today: to arrive at a precise, abstract, and hardware in-
dependent model of the informational and time characteristics of a data 
processing problem. The abstract notation should enable the analyst to or-
ganize the problem around any piece of hardware. In other words, the pur-
pose of an abstract specification was for it to be used as an invariant basis 
for designing different alternative implementations, perhaps even using 
different hardware components.  

Research and practice of abstract modeling of information systems has 
since the late fifties progressed through many milestones and achieve-
ments. In the sixties, pioneering work was carried out by the CODASYL 
Development committee who in 1962 presented the “Information Alge-
bra”. At about the same time Börje Langefors published his elementary 
message and e-file approach to specification of information systems. The 
next decade, the seventies, was characterized by the introduction of a large 
number of new types of, as they were called, “data models”. We saw the 
birth of, for instance, Binary Data Models, Entity Relationship Models, 
Relational Data Models, Semantic Data Models, and Temporal Deductive 
Models. At this time, most of the researchers in the modeling field had, es-
sentially, a data-base orientation. I believe the first time the term “concep-
tual schema” was used was by the ANSI/X3/SPARC, Study Group on 
Data Base Management Systems, in 1975 when they formulated the “three 
schema approach” to data-base management. The conceptual schema was 
seen as the “essential schema”, depicting the content of the database in an 
implementation, and external representation independent way.   

The term conceptual modeling gradually gained general acceptance, 
perhaps largely due to the use of the term conceptual schema in the ISO 
working group’s TC97/SC5/WG5 preliminary report, Concepts and Ter-
minology for the Conceptual Schema edited by J.J. van Griethuysen, et. al. 
in 1982. At about the same time information system researchers began to 
use the term “conceptual modeling” for modeling of information systems 
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in an implementation independent way. Usually, this kind of modeling was 
carried out during the requirements elicitation and specification phase of 
systems development. The last two decades of conceptual modeling prac-
tice have been dominated by two main trends. The first is the spread and 
use of the UML object oriented language and approach, including its lan-
guage OCL (Object Constraint Language) for formulating business rules 
and constraints. The second trend, in my opinion, is the change of mode of 
modeling towards a way where users and stakeholders are very much more 
involved – participatory modeling. This trend points to the importance of 
modeling skills and knowledge becoming important not only for system 
development professionals but also for stakeholders and users. 

Antoni Olivé has written an impressive book that brings and puts to-
gether knowledge of conceptual (and data-) modeling, produced in re-
search spanning more than half a century. In doing so it summarizes, and 
puts in context, research on conceptual modeling presented in more than 
220 references. It deals with all essential aspects of conceptual modeling, 
thoroughly explained and illustrated in detail. Structural as well as behav-
ioral conceptual modeling concepts are explained in detail. Every chapter 
is concluded with a bibliographical note that gives the research-oriented 
reader the possibility of further study through references to works on that 
particular topic. Each chapter also gives students a challenge to test their 
newly acquired knowledge by solving a number of problems. A fairly 
large chapter at the end, describing a case study, illustrates the use of mod-
eling constructs presented earlier. Of practical interest are the frequent 
translations into UML and OCL of the modelling concepts that are intro-
duced. The book concludes with a chapter on “Metamodeling” and a chap-
ter on “Meta-metamodeling” and Metadata Interchange (XMI), a standard 
that enables the exchange of data about schemas as well as about schema 
instances. Metamodeling is also an important mechanism for reasoning 
about conceptual schema languages of different types and for integrating 
conceptual models with other kinds of models, such as business and enter-
prise models. 

The book is one of the most informative and comprehensive texts on 
conceptual modeling published to date. It is very appropriate for students 
of advanced level university courses in information systems, requirements 
engineering, or in data base design, as well as for qualified practitioners in 
the field. 
 
Lund in May, 2007                                                                  Janis Bubenko 
                                       Prof. em., Dr Techn, Dr. Techn. h.c., ACM Fellow 
                                             Department of Computer and Systems Science 
                                            Royal Inst. of Technology, Stockholm, Sweden 



Foreword 

Antoni Olivé has taken the time to create a book that is certain to become 
essential reading for students of conceptual modeling in Information Sys-
tems Engineering. Despite the title, this is not just “another book” on con-
ceptual modeling, data bases and information systems. Antoni Olivé has 
succeeded in creating a text that brings formalization together with the es-
sentials of information systems engineering in a way that encourages the 
understanding of both. 

The most common modeling approaches in Information Systems Engi-
neering may be classified into approaches that are process-oriented, data-
oriented, rule-oriented or object-oriented. Antoni Olivé has been a staunch 
supporter of rule-oriented approaches in his scientific work. It is impres-
sive to see how he has managed to adopt a holistic method in relating his 
rule-oriented attitude and background to the other three “schools” of 
thought.  

His objective of explaining in detail the use of the standard Object Con-
straint Language (OCL) of the Universal Modeling Language (UML) was 
essential in providing an elegant harmonization of the four approaches. To 
achieve this he starts out with the very simple assumption that an informa-
tion system has three main functions: a memory to maintain a representa-
tion of the state of a domain, an informative function to provide informa-
tion on the state of the domain, and an activity function to perform actions 
that change the state of the domain. This initial assumption rests heavily on 
his own scientific research on rule-oriented approaches to Information Sys-
tems Engineering. He has, nevertheless, managed to explain the essentials 
of UML/OCL within this framework. 

Antoni Olivé has placed more emphasis on formalizing the end result of 
the process of developing an information system than on the stages leading 
to the detailed end result. The intermediate stages between the initial con-
ception of a system, through its requirement engineering stage and into the 
finalization stage where the detailed system solution is hammered out, 
have been given less emphasis. Much of this is well treated in the litera-
ture. Most of the known approaches are not based on well-defined specifi-
cation languages. It may very well be that Antoni Olivé’s explanation of 
the formal basis of UML/OCL will encourage a re-examination of the re-
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quirements engineering phase associated with object-oriented approaches 
to information systems design, as well as a re-examination of process ori-
ented approaches. 

We cannot expect in the future to have only one universal modeling lan-
guage for Information Systems Engineering. There will always be a need 
for introducing domain-specific language constructs into the information 
system’s specific modeling language, so we will always be challenged by 
different modeling languages. Hopefully they may in the future be seen as 
various dialects of a common family of Information Systems Engineering 
languages. In order to relate the dialects to each other, we need meta-
modeling languages. Antoni Olivé’s text is rounded off with a treatise on 
meta-modeling, and he thus prepares the reader for the future need of be-
ing able to model the modeling languages. 

 
Trondheim May, 2007                                                             Arne Sølvberg 
                                                                                                         Professor  
                 The Norwegian University of Science and Technology – NTNU 
                                                 Dean of Faculty of Information Technology,  
                                                        Mathematics and Electrical Engineering



 

 
 
 
 
 
 
 
 
 
 

 
 
 
 

To those who are happy to see this book, 
and to those who would be happy to see it, 

if they were still with us. 



Preface 

Preface 

If an information system is able to perform useful actions for persons 
working in a given domain, it is because the system knows something 
about that domain. The more knowledge it has, the more useful it can be to 
its users. Without that knowledge, the system is useless. 

Most of the knowledge a system has is concrete or particular. It refers to 
concrete objects and the relationships they have in the domain at some 
point in time. Given that many systems work in domains with a very high 
number of objects and relationships, it is hardly surprising that the con-
crete knowledge they have is very large. Think, for instance, of bank man-
agement systems, where it is usual to find a large number of accounts, 
loans, etc. for which many details must be known (account holders, bal-
ances, transactions, etc.).  

However, it is not possible to have concrete knowledge about a domain 
without a prior general knowledge about that domain. A bank management 
system may know the balances of accounts once it knows that there are ac-
counts in the domain, and that accounts always have a balance. Similarly, 
the system may know the holders of accounts because it knows that ac-
counts do have holders. Concrete knowledge requires prior general knowl-
edge, which is independent of the concrete objects and relationships exist-
ing at any point in time. 

This general knowledge also includes rules that must be obeyed (for in-
stance, balances may not be negative), definitions that allow new knowl-
edge to be obtained from existing knowledge (for instance, what is under-
stood as the return on investment), and details of the actions that the users 
want the system to perform when some condition is satisfied (for example, 
how to calculate the interest earned by savings accounts). 

In the information systems field, we use the name conceptual modeling 
for the activity that elicits and describes the general knowledge a particular 
information system needs to know. The main objective of conceptual mod-
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eling is to obtain that description, which is called a conceptual schema. 
Conceptual schemas are written in languages called conceptual modeling 
languages. Conceptual modeling is an important part of requirements en-
gineering, the first and most important phase in the development of an in-
formation system. 

The elicitation of the general knowledge required by an information sys-
tem is a necessary activity. Information systems cannot be designed or 
programmed without prior elicitation of the knowledge they need to know. 
This is captured by one of the principles that guide this book, called the 
principle of necessity: “to develop an information system, it is necessary to 
define its conceptual schema”. 

The only option we have is whether or not to explicitly describe that 
knowledge. That is, whether or not to write the conceptual schema. Some-
times, system development projects choose not to write the conceptual 
schema, or they do not have the time to do so. In these cases, the general 
knowledge is in the designers’ heads only. This has many disadvantages. If 
there are several designers, they must share this knowledge without an ex-
plicit description. User participation is hampered. Once the system has 
been built, it is likely that the general knowledge will be forgotten. The fu-
ture evolution of the system will require that general knowledge to be re-
discovered. The explicit description of the conceptual schema brings many 
advantages, especially when it is done in a machine-readable language.  

Furthermore, many researchers have put forward, many times, a vision 
in which the conceptual schema is the only important description that 
needs to be created in the development of an information system. Accord-
ing to this vision, the building of information systems is completely auto-
mated. The only things to be done are to determine the functions that the 
information system has to perform and to define its conceptual schema 
(and, probably, the design and construction of the input/output user inter-
face). The huge potential economic benefit of this vision justifies the re-
search and development efforts currently devoted to it, which are being 
made mainly in the framework of OMG’s Model Driven Architecture. The 
progress made in other branches of computer science (especially in the 
field of databases) makes this vision feasible in the mid-term. On the day 
when the vision becomes a reality we shall be able to say that “to develop 
an information system it is necessary and sufficient to define its conceptual 
schema”. 
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Objectives 

The main objectives of this book are: 
 
1. To describe the principles of conceptual modeling independently of 

particular methods and languages. 
2. To describe these principles in the detail required to correctly apply 

them in real projects and to be able to assess the methods, languages, 
and tools that are most suitable in those projects. 

3. To describe the formal bases of conceptual schemas. However, in this 
book, the logical formalization is only sketched and is not pushed too 
far. The book describes the formal bases with extensive use of 
intuitive ideas and examples.  

4. To describe in detail the use of standard UML/OCL as a particular 
conceptual modeling language.  

5. To provide exercises for readers who want to practice and deepen 
their knowledge by solving exercises.  

6. To give bibliographical references for the concepts presented in the 
book and for the extensions suggested to readers, including further 
formalizations. 

Audience 

The book has two intended audiences: 

1. Computer science and information systems students who, after an in-
troduction to information systems, databases, and UML, want to 
know more about conceptual modeling in their preparation for profes-
sional practice. 

2. Professionals with some experience in the development of informa-
tion systems who feel a need to formalize their practical experiences 
or to update their knowledge, as a way to improve their professional 
activity. 

Some prerequisite knowledge is assumed – and necessary – in order to 
benefit from the book: 

1. Knowledge of the fundamental concepts of the language of first-order 
logic. 

2. Knowledge of fundamental concepts of object technology, such as 
classes, operations, and inheritance. 
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3. Knowledge of the fundamental constructs of ER and UML for infor-
mation modeling. A basic knowledge of OCL is necessary from 
Chap. 8 onwards. 

Structure of the Book 

The 18 chapters of this book are divided into five logical parts: 

• Chapter 1: introduction. Here we give a general view of conceptual 
modeling. Readers with prior knowledge about the field may skip this 
chapter, but it may be useful to those who want to recall concepts and 
terms learnt long ago. 

• Chapters 2–10: structural modeling. Here we study the concepts of en-
tity types, relationship types, constraints, derivation rules and taxono-
mies. 

• Chapters 11–15: behavioral modeling. Here we describe the concepts of 
events, their constraints, and their effects. We also describe behavioral 
modeling with state machines and statecharts. We include a review of 
the concept of the use case and its relationship to the conceptual 
schema.  

• Chapter 16: a case study. In the preceding chapters, we follow a bot-
tom-up approach, starting with the basic elements of entity and relation-
ship types, and then proceeding to more complex elements until we 
reach state transition diagrams and statecharts. In this chapter, we pro-
vide an integrated view of conceptual modeling by means of a case 
study. 

• Chapters 17 and 18: metamodeling. Here we introduce the main con-
cepts of metamodeling and describe their use. We study two important 
standards related to metamodeling: the MOF and XMI. 

Figure I.1 shows the main precedence relationships among the chapters 
of this book. 

The book also includes a companion website (http://www-pagines. 
fib.upc.edu/~modeling) where students and professionals can find addi-
tional exercises, case studies, reading material and presentations on se-
lected topics. If you have any comments on the book, any typos you have 
noticed, or any suggestion on how it can be improved, I would like to hear 
from you. The companion website includes information on how to contact 
me. 

For the convenience of the reader, in this book I use “he” to refer to both 
genders. 
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Fig. I.1. Main precedence relationships among the chapters of this book

1 Introduction

2 Entity types

3 Relationship types

4 Cardinality
constraints

10 Taxonomies

11 Domain events

12 Action request
events

15 Use cases

16 Case study

8 Derived types 9 Integrity constraints 6 Reification

5 Particular kinds of
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14 Statecharts
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Behavioral Modeling

Metamodeling
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1 Introduction 

In this chapter we review the basics of the conceptual modeling of infor-
mation systems. We explain that conceptual modeling is a necessary activ-
ity in the development of an information system, the objective of which is 
to define the conceptual schema of the system. We also explain that con-
ceptual modeling must be preceded and followed by other activities.  

We begin by reviewing the concept of an information system. In par-
ticular, we are interested in the functions that these systems perform. This 
is the subject of Sect. 1.1. In order to perform their functions, information 
systems require some knowledge, which must be defined in each case. In 
Sect. 1.2, we explain that a conceptual schema is the definition of the 
knowledge an information system needs to perform its functions. The ex-
planation is introductory and somewhat informal. We also refer to the 
chapters of the book in which the various concepts are studied in more 
depth. Section 1.3 shows the role of conceptual schemas in the architecture 
of information systems. Section 1.4 presents the activity of conceptual 
modeling in the wider context of the development of information systems. 
Once we have defined conceptual schemas and their role in the architec-
ture and development of information systems, we describe in Sect. 1.5 the 
properties that conceptual schemas must have if they are to fulfill their 
roles effectively. Section 1.6 concludes the chapter with a brief history of 
conceptual modeling. 

1.1 Functions of an Information System 

The concept of an information system began to emerge around the year 
1960, and although it may be considered a well-established concept it re-
mains difficult to define precisely. Part of the difficulty stems from the fact 
that information systems can be analyzed from at least three different, but 
complementary, perspectives:  

1. The contribution they make. 
2. Their structure and behavior. 
3. The functions they perform. 
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From the first perspective, information systems are defined as a means 
that allows wider systems to achieve their objectives. This type of defini-
tion emphasizes that information systems are subsystems that contribute to 
wider systems. An information system does not exist for its own purposes. 
Examples of this kind of definition are “An information system is a system 
designed to support operations, management, and decision making in an 
organization”, and “An information system is a system that facilitates com-
munication among its users”. 

For our purposes, the main problem with this kind of definition is that it 
does not clearly establish what an information system actually is. The 
wider system of which an information system is a part may also require 
means other than information systems to achieve its objectives. Further-
more, there are other instruments that can provide similar contributions 
without actually being information systems. For example, there are various 
ways of facilitating communication among users, including working in 
close proximity to each other or participating in meetings. 

 Even if it is difficult to define information systems in terms of the con-
tribution they provide, it is very important to realize that this consideration 
is essential during their development. The requirements of an information 
system are determined by the objectives of the organization for which the 
system is being designed and built. 

 Definitions from the second perspective emphasize the structure and 
behavior of the physical and abstract elements that make up an information 
system. Both structure and behavior may be characterized in greater or 
lesser detail.  

For the purposes of conceptual modeling, the most useful definitions are 
those based on the functions performed by information systems. That is, 
definitions that focus exclusively on what information systems do, without 
considering why and how they do it. 

 From this perspective, the classic definition states that “An information 
system is a system that collects, stores, processes, and distributes informa-
tion”. This is a commonly accepted definition, because of both its simplic-
ity and its generality. However, some further comments may be necessary 
in order to make it more precise. 

Firstly, in information systems engineering, we should restrict the defi-
nition to designed systems, that is, systems that are designed and built by 
an engineer. The restriction is necessary because there are natural systems 
that perform information-processing functions, which are beyond the scope 
of our study. For example, in cognitive science, the human mind is viewed 
as a complex system that receives, stores, processes, and distributes infor-
mation.  
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Secondly, the above definition is too general with regard to the kind of 
information an information system may deal with. In fact, the definition 
places no constraints on the possible type of information and thus encom-
passes systems that many people would not in fact consider to be informa-
tion systems. For example, a fax machine could be considered an informa-
tion system according to this definition, since it can be regarded as a 
system that receives documents (which contain data representing informa-
tion), stores them (even if only for a short time), translates them (that is, 
changes the representation of the information), and sends the result across 
telephone lines. 

The usual constraint on the kind of information handled by an informa-
tion system is that it must refer to the state of a certain domain (also called 
the object system or universe of discourse). The nature of this domain does 
not influence the definition of an information system. For many systems, 
the domain is an organization, but the definition does not exclude other 
domains, such as a vehicle, the atmosphere, or a chess game. 

According to this definition, a fax machine is not an information system. 
A fax does not consider the documents it sends as information about the 
state of a particular domain. To a fax machine, documents are merely unin-
terpreted data.  

We have therefore established that an information system is a designed 
system that collects, stores, processes, and distributes information about 
the state of a domain. This book focuses on this type of information sys-
tem, and for the sake of simplicity, and when no confusion is likely to 
arise, we refer to such systems as information systems, or just as systems.  

It is easy to agree on the above functions, but the problem remains that 
they are too general. For this reason, some authors prefer to use a more 
specific definition of these functions, one that captures the nature of in-
formation systems more precisely. A system is therefore considered to 
have three main functions (Fig. 1.1): 

1. Memory: to maintain a representation of the state of a domain. 
2. Informative: to provide information about the state of a domain. 
3. Active: to perform actions that change the state of a domain. 

In the following sections, we shall analyze each of these functions. 

1.1.1 The Memory Function 

The objective of the memory function is to maintain an internal representa-
tion of the state of the domain. This representation is needed by the other 
functions of the system. The state of the domain usually changes fre-
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quently and in many different ways. The system must keep track of the 
state changes and update the internal representation accordingly.  

The memory function may be performed in two modes: on request or 
autonomously. In the first mode, when the state changes the users inform 
the system about the change that has occurred and request the system to 
update the representation of the state. For example, a system may know 
customers’ addresses because whenever a customer changes its address, 
someone informs the system about the new address and expects the system 
to remember it. The information system is therefore totally reliant on hu-
man input in order to know customer addresses.  

In the second, autonomous mode, the system memorizes the state of the 
domain without an explicit request from a user. The system is able to 
autonomously observe the state of the domain. An example of this is a sys-
tem that periodically reads a device that gives the temperature of a build-
ing. In this case, the system can maintain a representation of the tempera-
ture because it is able to obtain the reading directly from the environment.  

1.1.2 The Informative Function 

By means of the informative function, the system provides users with in-
formation about the state of the domain. The state of the domain can often 
be observed directly in the domain, while at the same time it is represented 
in the information system. For example, the quantity of a given product on 
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the shelves of a retail store may be directly observed when necessary, and 
can be simultaneously represented in the information system. In general, it 
is easier to request the information from the system than to observe the 
domain directly. 

Sometimes the state is represented only in the information system and it 
is very difficult, if not impossible, to observe it directly in the domain. For 
example, in a retail store it is not possible to observe how many units of a 
product have been sold up to a given moment. As a further example, con-
sider account balances in the banking domain. The balance of an account 
at a given point cannot be obtained by observing the account holders or the 
particular branch where the account is held. The only place in which bal-
ances can be viewed is in the information system. In these cases, the in-
formation system is the only source of information about the state, and the 
system thus becomes indispensable to its users. 

In the most frequent case, users pose a query, which is then answered by 
the system. Both query and answer are made in a language understood by 
the users and the system. Queries may be extensional (the most frequent 
case) or intensional. An extensional query requests information about the 
state of the domain, to which the system gives an extensional or inten-
sional answer. An extensional answer, which is the most common type, 
consists of information about the state of the domain in more or less detail. 
An intensional answer characterizes the state of the domain, but it does not 
describe the state explicitly.  

Examples of simple extensional answers might be:  

• Laura is taking the Conceptual Modeling course. 
• Eighty students are taking the Software Engineering course. 

Some extensional answers need to be much more detailed, and may re-
quire statistical analysis, simulation, or execution of a decisional model. 
Examples of such answers might be: 

• Ninety percent of customers who buy books also buy CDs. 
• No customer has bought more than 200 books. 

As we have said, the answer to an extensional query may be intensional. 
For example, the system’s answer to the question “Who earns more than 
100K euros?” might be “The managers.” 

Intensional queries concern the type of information the system knows, 
rather than particular information. For example: 
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• What do you know about students? 
• What is the maximum number of courses a student can take simultane-

ously? 
• What is a student? 

The informative function can also be performed in two modes. The most 
frequent is on request: users receive information when they ask for it ex-
plicitly. In contrast, in the autonomous mode, users define a condition for 
the state of the domain and order the system to inform them when this 
condition is satisfied. For example, the condition might be “the tempera-
ture is above a given level”, and users expect that the system will issue a 
signal when the condition is satisfied.  

The informative function does not change the state of the domain. The 
system merely provides the information requested by users. It is the users 
who will take actions that change the domain, if they wish to do so. 

1.1.3 The Active Function 

With the active function, the system performs actions that modify the state 
of the domain. In order to perform this active function, the system must 
know the actions it can take, when they can be taken, and how they will af-
fect the state of the domain.  

The active function also operates in the two modes mentioned above. In 
the on request mode, users delegate the system to perform an action that 
may modify the state of the domain. For example, users may ask the sys-
tem to calculate the interest on bank accounts and credit the required 
amounts to the accounts. 

In the autonomous mode, users delegate the system to perform an action 
that may modify the state of the domain when a particular condition is sat-
isfied. The system will monitor the state of the domain and, when the con-
dition is satisfied, perform the requested action. 

A variety of actions may be delegated to the system (in both modes). 
These may be simple and clearly defined, or actions for which only the ob-
jectives are defined, leaving the system free (or autonomous) to decide 
how best to achieve them. 

The classic example of the active function, in autonomous mode, is the 
automatic replenishment of a store. For each product, users define a reor-
der point and a quantity to be ordered. The system maintains the available 
quantity of each product and users give it the task of issuing replenishment 
orders when the quantity on hand is below the reorder point.  
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In the above example, we assumed that the state of the domain repre-
sented in the system changed when a new order was issued. If the orders 
were not part of the state of the domain represented in the system, then the 
automatic replenishment would not be an example of the active function. It 
would instead be an example of the informative function. Outputs from the 
system could require action by users, but the state of the domain would not 
be altered. 

Table 1.1 is a summary of the three functions and the two modes. 

Table 1.1. Examples of functions in the two modes 

                                         Modes   
Functions On request Autonomous 
Memory Change of customer address Temperature reading 
Informative What courses is a student taking? Signal when temperature is 

above a given level 
Active Credit interest to accounts Automatic replenishment of a 

store 

1.1.4 Examples of Information Systems 

All conventional information systems perform a memory function and an 
informative function. We shall not give any specific examples, since they 
are already well known and the functions they perform are easily identi-
fied. However, it may be useful to discuss some particular types of system 
in order to see that, although one might question whether they are actually 
information systems, they do in fact perform the functions we have seen in 
this section. 

1.1.4.1 Chess-Playing System 

Let us imagine a chess-playing system. We shall see that this system can 
be considered an information system. 

The domain consists of the board, the pieces, the position of the pieces 
on the board, and the player. At any given moment, the domain is in a par-
ticular state, which varies over time. The system must maintain a represen-
tation of the state of the domain; otherwise, it would be unable to play. 
When a move is made, the system must somehow be made aware of it so 
that it can update the representation of the state. This is a simple example 
of the memory function of an information system. 
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The system has to display the state of the game on a screen. When a 
game starts, the system shows the initial distribution of the pieces. After 
every move, the system must show the new distribution. This is therefore 
an example of the informative function in the autonomous mode. 

Once the player has made a move, it is assumed that the system will 
consider the alternatives that will allow it to achieve its objective (using 
the current state of the game and the knowledge that the system may have), 
and that, after a certain amount of time, it will make its own move. In mak-
ing this move, the system changes the state of the domain. This is therefore 
a complex example of the active function.  

If the system were naive enough to offer the player genuine advice 
about the next move, this would be an example of the informative function 
in the on request mode.  

1.1.4.2 Intranet Email System 

Let us consider an intranet email system. The domain is made up of users 
(who send or receive messages), distribution lists, messages, folders cre-
ated by users to organize their messages, and other components. Each mes-
sage has a given content, a subject, a sender, a date, and one or more re-
cipients. Normally, the content and subject of a message are data that 
cannot be interpreted by the system. 

The memory function maintains a representation of the state of the 
above domain. The main part of the state will be represented only within 
the system and cannot be directly observed in the domain. The state of the 
domain changes when a user issues a message, receives a message, deletes 
a message, creates a folder, puts a message in a folder, removes a message 
from a folder, or deletes a folder. 

 One use of the informative function is to allow users to view their mes-
sages and the contents of their folders in more or less detail. 

The active function consists in sending messages created by users to the 
respective recipients. The sent message is put in the corresponding inbox 
of each recipient. This function is performed in the on request mode.  

1.1.4.3 Real-Time Systems 

The final example is not a concrete system but a type of system: a real-
time system. There is no consensus on precisely what real-time systems 
are, but they can generally be identified by a set of common characteris-
tics, which we analyze below.  

Firstly, a real-time system monitors and controls an environment (that 
is, it issues controlling commands that change the environment). In our 
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terminology, monitoring the environment is a memory function and con-
trolling it is an active function. Secondly, real-time systems interact with 
users, for whom they perform a required function. Such a function may be 
either informative or active. Real-time systems frequently have various 
sensors and intersystem interfaces that provide continuous or periodic in-
put. These are the mechanisms that allow the system to know the state of 
the environment for the memory function. Finally, a real-time system has a 
set of actuators, or intersystem interfaces, which must be driven periodi-
cally. These correspond to the mechanisms the system uses to send the 
output to the environment from the active function. 

 A real-time system has other characteristics that are related not to the 
essential functions it has to perform, but to how it must perform them, for 
example sampling intervals for sensors, response time, simultaneous pro-
cessing of multiple inputs, high reliability, and resource (main or secon-
dary memory, processor capacity, etc.) limitations. These characteristics 
are very important but they do not change the fact that real-time systems 
may be considered as information systems. 

1.2 Conceptual Modeling 

In the previous section we reviewed the main functions of an information 
system. To be able to perform these functions, a system requires knowl-
edge about its domain and about the functions it has to perform. This sec-
tion describes the main types of knowledge required by most information 
systems. The line of reasoning we follow is: 

• If the memory function of an information system maintains a representa-
tion of the state of the domain, we must define the particular state that 
must be represented. 

• The state of most domains varies over time, so potential changes must 
be defined. 

• The representation of the state in the information system must be consis-
tent. Therefore, it is necessary to define when a representation is consis-
tent. 

• Answering queries posed by users often requires an inference capability 
on the part of the information system. This capability uses derivation 
rules, which must be defined. 

In the reminder of this section, we develop the reasoning outlined 
above. As part of our explanation, we shall offer an informal introduction 
to the terminology, give an intuitive idea of the basic concepts and identify 
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the chapters of the book in which these concepts are studied in greater 
depth. 

1.2.1 The Structural Schema 

The objective of the memory function of an information system is to main-
tain a representation of the state of its domain. The state of a domain con-
sists of a set of relevant properties. 

The question of what the relevant properties of the domain of a system 
are depends on the purpose for which the system is built. We have already 
mentioned that an information system is always a means through which a 
wider system can achieve its objectives. The relevant properties depend on 
these objectives and on the anticipated contribution of the information sys-
tem. We intend to focus here on what the relevant properties are, rather 
than how to determine them. This, of course, does not mean that the latter 
aspect is less important.  

In the field of information systems, we make the fundamental assump-
tion that a domain consists of a number of objects and the relationships be-
tween them, which are classified into concepts. The state of a particular 
domain, at a given time, therefore consists of a set of objects, a set of rela-
tionships, and a set of concepts into which these objects and relationships 
are classified. For example, in the domain of a company, we may have the 
concepts of a customer, a product and a sale. At a given moment, we have 
objects classified as customers, objects classified as products, and relation-
ships between customers and products classified as sales. 

This underlying assumption is also shared by disciplines such as linguis-
tics, (first-order) logic, and cognitive science. Unfortunately, these disci-
plines have not yet reached agreement regarding the terminology, con-
cepts, and mechanisms that we use to distinguish between the objects and 
relationships in a domain. Consequently, we do not have a solid theoretical 
basis on which to base our study and, as is often the case when discussing 
information systems, we must adopt a humble and eclectic attitude. 

 The assumption that a domain consists of objects, relationships, and 
concepts is a specific way of viewing the world (a domain). At first glance, 
it seems an obvious assumption. The truth of the matter is, however, rather 
different. Other possible views exist that may be more suitable in other 
fields. To give a simple and well-known example, in propositional logic 
one assumes that domains consist of facts, which may be either true or 
false. The study of the nature and organization of the real world is a branch 
of philosophy called ontology. 
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When we assume that a domain consists of objects, relationships, and 
concepts we commit ourselves to a specific way of viewing domains. The 
term used in ontology to denote this commitment is ontological commit-
ment. In the field of information systems, this commitment to viewing do-
mains in a particular way is called the conceptual model. In principle, the 
same conceptual model can be applied to many different domains, and 
several conceptual models can be applied to the same domain. 

The set of concepts used in a particular domain constitutes a conceptu-
alization of that domain. The specification of this conceptualization is 
sometimes called an ontology of the domain. Note that the term ontology is 
used to denote two different ideas: a branch of philosophy and a specifica-
tion of a conceptualization. In computer science, the latter is the usual 
meaning. 

There may be several conceptualizations of the same domain and thus 
several ontologies. Additionally, an ontology is a concrete view of a par-
ticular domain. Therefore, it is also an ontological commitment for the 
people who observe and act on this domain.  

In the field of information systems, ontologies are called conceptual 
schemas, and the languages in which they are written are called conceptual 
modeling languages.  

The formal basis of conceptual modeling languages is logic. Any con-
ceptual schema can be specified in some kind of logical language. In par-
ticular, the first-order logic (FOL) language is sufficient for the specifica-
tion of most conceptual schemas. In the examples given in this 
introductory chapter, we use the FOL language only. 

However, in many projects the use of logical languages is impractical, 
and specialized languages are more suitable. One such language is the Uni-
fied Modeling Language (UML). In this book, we shall explain in detail 
the use of UML as a conceptual modeling language. 

As we shall see, conceptual models of information systems make more 
complex assumptions than simply considering that a domain consists of 
objects and relationships. A conceptual model assumes that a domain in-
cludes other “things” and that objects, relationships, and concepts have 
several properties that must be distinguished. A conceptual model also in-
cludes a view of how a domain changes. 

There is great diversity in conceptual models, and they may be more or 
less useful in particular situations or for particular purposes. However, all 
of them are based on the fundamental assumption that we have mentioned, 
which we shall attempt to clarify in the reminder of this section. 

We begin by trying to establish the distinction between a concept and an 
object. According to dictionary definitions, a concept is 
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• “An abstract or generic idea generalized from particular instances.”1 
• “An idea or mental picture of a group or class of objects formed by 

combining all their aspects.”2 

These definitions fit our purpose here. A concept, then, is something 
that we have formed in our mind through generalization from certain in-
stances. A concept has an extension and an intension. The extension of a 
concept is the set of its possible instances, while the intension is the prop-
erty shared by all its instances. 

As human beings, we use the concepts that we have to structure our per-
ception of a domain. In this sense, concepts are like “spectacles” through 
which we observe a domain. Concepts allow us to classify the things that 
we perceive as exemplars of the concepts that we have. In other words, 
what we observe depends on the concepts that we employ in the observa-
tion. 

 Classification is the operation that associates an object with a concept. 
The inverse operation, instantiation, gives an instance of a concept. The 
set of objects that constitutes an instance of a concept at a given time is 
known collectively as the population of the concept at that time. 

An entity type is a concept whose instances are individual, identifiable 
objects. Objects that are instances of an entity type are called entities. 
Figure 1.2 shows two examples of entities and entity types: a person and a 
book. In the FOL language, entity types are represented by unary predi-
cates. We shall study entity types in the next chapter. 

                                                      
1 Merriam-Webster Online Dictionary. 
2 Concise Oxford Dictionary. 

Fig. 1.2. Entities and relationships are instances of concepts
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All entities are an instance of an entity type, but an entity may be an in-
stance of more than one entity type. For example, in Fig. 1.2, the person 
shown could also be an instance of student. 

If there is a thing that we are interested in, but which we are unable to 
classify into any of the concepts we have, we then have to design a new 
concept of which this particular thing could be an instance. In contrast, 
there may be concepts without instances in the usual domains. The typical 
example is unicorn. In conceptual modeling, we do not show a practical 
interest in concepts without instances.  

Some concepts are associative, in the sense that their instances relate to 
two or more entities. Relationship types are concepts whose instances are 
relationships. The set of relationships that are instances of a relationship 
type at a given time is called the population of the relationship type at that 
time. Figure 1.2 shows an example of this: the relationship type reads be-
tween a person and a book. In the FOL language, a relationship type whose 
instances relate n entities is represented by an n-ary predicate. We shall 
study relationship types in Chap. 3.  

The set of entity and relationship types used to observe the state of a 
domain is the conceptualization of that state. The description of that con-
ceptualization, as well as other elements that will be mentioned below, is 
sometimes referred to as the ontology of the state, the conceptual schema 
of the state, or simply the structural schema. The set formed by the struc-
tural schema and the behavioral schema, which will be described later, is 
called the conceptual schema.  

Not all of the entities and relationships in a domain need to be repre-
sented in an information system. This leads us to the distinction between 
the conceptual schema of a domain and the conceptual schema of an in-
formation system. The former describes the conceptualization of the do-
main, which applies irrespective of which entities and relationships will be 
represented in the information system. In contrast, the latter describes only 
a fragment of the conceptualization such that its entities and relationships 
are represented in the information system. For example, the conceptual 
schema of the domain shown in Fig. 1.3 contains five concepts, but we 
want to represent only three of them in the information system (person, 
book, and reads). 

If the memory function has to maintain a representation of the state of 
the domain, the system has to know which entity and relationship types are 
to be represented, as well as their current population. Some systems may 
also require knowledge of the population at some or all points in the past. 
The entity and relationship types of interest are general knowledge about 
the domain, whereas the time-varying population is particular knowledge.  
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1.2.2 The Information Base 

An information base is a representation of the entities and relationships of 
a domain, and their classification into entity and relationship types. The 
classification of an entity into an entity type or of a relationship into a rela-
tionship type is called a fact, and we say that the information base contains 
the facts about a domain. 

In the FOL language, entities are represented by constants, and a fact is 
an atomic formula without variables. For example, let us imagine that we 
have a schema with two entity types, represented by the predicates Person 
and Book, and a relationship type, represented by the binary predicate 
Reads. Assume also that the domain contains only one person and one 
book and that the person is reading the book. Then, the information base 
will contain 

• a constant A that represents the person; 
• a constant B that represents the book; 
• the fact Person(A), representing A as a person; 
• the fact Book(B), representing B as a book; 
• the fact Reads(A,B), representing person A reading book B. 

Figure 1.3 illustrates the relationship between the conceptual schema 
and the information base. The conceptual schema is described in the FOL 
language. The information base contains three facts, described in the same 
language. 

The information base does not exist physically. It is simply an abstract 
description that we use to help us analyze a schema and illustrate particular 
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situations in a domain. Naturally, the system must maintain an internal de-
scription (e.g. in a database) of the entities and relationships in a domain, 
but the information base is a description closer to the conceptual schema 
and is not meant to be an internal description. 

Unfortunately, the term conceptual model is not always used to mean 
the same thing in the literature. In addition to the meaning we have as-
signed to it, other meanings we have found are: 

• Conceptual model = Conceptual schema 
• Conceptual model = Conceptual schema + Information base 

In this book, we shall use three distinct terms (conceptual model, con-
ceptual schema, and information base) to distinguish three different con-
cepts. The same distinction is well established in the field of databases: 
there are data models (for instance, relational data models), database 
schemas, which are written in a particular data model, and databases, 
which are instances of database schemas. 

The term information base may be confused with the term knowledge 
base, which is used in the fields of deductive databases and artificial intel-
ligence. A knowledge base is a set of representations of the knowledge 
about a domain. Normally, the language used to represent this knowledge 
is the FOL language. The knowledge may be simple facts, which are rep-
resented as atomic formulas, or general knowledge about a domain, which 
is represented as complex formulas. In conceptual modeling, the general 
knowledge about a domain is represented in the conceptual schema, while 
simple facts are represented in the information base. Therefore, the corre-
spondence is knowledge base = conceptual schema + information base. 

1.2.3 The Behavioral Schema 

The behavioral schema specifies the valid changes in the domain state, as 
well as the actions that the system can perform. Changes in the domain 
state are domain events, and a request to perform an action is an action re-
quest event. We introduce these two event types below.  

1.2.3.1 Domain Events 

In general, the state of the domain of an information system changes over 
time. Consequently, if the information base is a representation of this state, 
the facts of the information base will need to change over time. 

We say that there is a change in the state of the domain at time t if the 
entities or relationships that exist at t are different from those existing at 
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the previous point in time. More precisely, a state change is a change in the 
population of one or more entity or relationship types between two states: 
the new state (corresponding to time t) and the old state (corresponding to 
time t - 1). 

A state change consists of a set of one or more structural events. A 
structural event is an elementary change in the population of an entity or 
relationship type. The precise number and meaning of structural events de-
pend on the conceptual modeling language used. In the FOL language, 
there are only two kinds of structural event: insertion and removal of facts.  

A domain event is a state change consisting of a set of one or more 
structural events that are perceived as a valid change in the domain. Any 
valid domain state change corresponds to one or more domain events. The 
concept of a domain event is akin to that of a transaction in the field of da-
tabase systems. We shall study domain events in Chap. 11.  

An example of a domain event could be a bank account transfer. Imag-
ine that account balances are represented in the information base by the bi-
nary predicate Balance, and that there are two accounts with respective 
balances 

Balance(Account_1,Money_1) 
Balance(Account_2,Money_2) 

A transfer of money M from Account_1 to Account_2 entails the following 
four structural events: 

 Deletion of Balance(Account_1,Money_1) 
Deletion of Balance(Account_2,Money_2) 
Insertion of Balance(Account_1,Money_1 - M) 
Insertion of Balance(Account_2,Money_2 + M) 

1.2.3.2 Action Request Events 

Information systems perform actions. The effect of an action is a change in 
the information base and/or the communication of a certain piece of infor-
mation or command to one or more recipients. An action request event (or 
simply an action request) is a request to the information system to perform 
an action. We shall study action requests in Chap. 12. 

Depending on the way in which they are initiated, action requests may 
be explicit, temporal, or generated. An explicit action request may be ex-
ternal or induced, depending on whether it is initiated explicitly by a user 
or by some other action, respectively. An external action request is initi-
ated by a user in the context of a use case, as we shall see in Chap. 15. 
Most action requests are external. 
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Two important types of external action request are domain event notifi-
cations and queries. A domain event notification is an external action re-
quest whose only effect is a change in the information base that corre-
sponds exactly to a single domain event. Through domain event 
notifications, users inform the system that a single domain event has taken 
place. The system has to change the information base to reflect the change 
in the domain.  

A query is an external action request that provides information to the 
initiator of the action request. Queries do not change the information base.  

A temporal action request is initiated simply by the passing of time. The 
action request occurs independently of the system.  

A generated action request is initiated when a particular generating 
condition is satisfied. The system detects when the condition is satisfied 
and, at that point, generates the corresponding action request. For example, 
some banks offer an account with an automatic transfer service. This ac-
count is a savings account from which funds may be transferred automati-
cally to the same account holder’s checking account to cover a check or to 
maintain a minimum balance. In this example, the generating condition 
may be “the checking account balance is insufficient to cover a check or is 
below the minimum” and the action request generated is an account trans-
fer. 

1.2.3.3 Event Types 

Events, either domain or action requests, are also instances of concepts. An 
event type, then, is a concept whose instances are events. Events have 

Account
Transfer MoneyAccount

Fig. 1.4. Events are instances of concepts
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characteristics, which are relationships with other entities. In particular, all 
events have a relationship with an entity that is a time instant, which corre-
sponds to the time at which the event occurs. Figure 1.4 is similar to Fig. 
1.2, but it shows that events are also instances of concepts. The character-
istics of the account transfer are the origin and destination accounts and the 
amount transferred. 

The set of event types that are relevant to an information system and the 
effects of these event types are described in the behavioral schema.  

The system must know the types of possible domain event. This is gen-
eral knowledge about the domain. Similarly, the system must know the 
types of possible action request and their respective effects. This is knowl-
edge about the functions that the system is required to perform. 

1.2.4 Integrity Constraints 

An information base is a representation of the state of a domain. An infor-
mation system obtains and updates an information base from messages re-
ceived through an input interface or from direct observation of the domain. 
In a perfect world, the information base would be an exact representation 
of the domain, input messages would always be correct, and the system 
would receive all relevant messages. In this perfect world, the information 
base would always contain only true facts and all relevant facts. An infor-
mation base is valid if the facts it contains are true, and is complete if it 
contains all relevant facts. 

Unfortunately, in reality it is likely that some of the input messages will 
communicate something that is not true. Also, the direct observation of the 
domain may be distorted. In such cases, some of the facts in the informa-
tion base may not be true. It is also likely that the system will not receive 
all relevant messages, in which case the information base may not be com-
plete. 

 Validity and completeness are the two components of the integrity of an 
information base. We say that an information base has integrity when all 
its facts are valid and it contains all relevant facts. Integrity is a very im-
portant property of an information base. Lack of integrity usually has 
negative consequences, which in some cases may be serious. 

In most systems, total integrity can only be achieved through human in-
tervention. In many cases, it is necessary to check the facts in the informa-
tion base against the domain. For example, many retail stores need to make 
periodic checks to ensure that the products they have in stock actually cor-
respond to the records in their system. It is not difficult to see that in some 
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cases the cost of maintaining integrity will be very high and difficult to 
avoid. 

However, it is possible to create mechanisms in a system that automati-
cally guarantee some level of integrity. We can establish conditions for the 
information base such that, if they are satisfied, we may be reasonably 
confident of its integrity. These conditions are called integrity constraints, 
and are defined in the conceptual schema. We shall study integrity con-
straints in Chap. 9. An integrity constraint is a condition that may not be 
satisfied under some circumstances, although it is understood that the sys-
tem will include mechanisms to guarantee that it is satisfied at any time. 
Integrity constraints are general knowledge about the domain. 

For example, imagine a conceptual schema with a relationship type as-
signed to, involving the entity types employee and project. Suppose that, in 
the domain, all employees are always assigned to one or more projects. 
Then, an integrity constraint could be “all employees are assigned to a pro-
ject”. Once this has been defined in the conceptual schema, we may as-
sume that the information base will always contain at least one relationship 
with a project for each known employee. This constraint does not guaran-
tee total integrity (e.g. the information base could contain incorrect records 
of projects to which employees are assigned), but it is a condition that 
must necessarily be fulfilled.  

An information base is consistent if it satisfies all the integrity con-
straints defined. A constraint is violated when it is not satisfied by the in-
formation base. When a constraint is violated, the system must produce a 
response to maintain consistency. Generally, violations are caused by the 
arrival of an incorrect message, and the response is usually to reject the 
message. 

The set of integrity constraints defined in a conceptual schema must be 
consistent (or satisfiable). This means that there must be at least one state 
of the information base that satisfies these constraints. Some sets of con-
straints are only satisfiable when the information base is empty or infinite. 
A well-known example is the following set of constraints: 

• Everybody works for somebody. 
• Nobody works for himself. 
• If x works for y and y works for z, then x works for z. 

This set can be satisfied only by an empty or infinite information base. In 
conceptual modeling, we do not have a practical interest in empty or infi-
nite information bases; therefore, we require that the set of constraints de-
fined in a conceptual schema must be strongly satisfiable, that is, satisfi-
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able in finite, nonempty information bases. If not stated otherwise, in this 
book we shall use the term “satisfiability” to mean strong satisfiability. 

Most integrity constraints refer to the current population of entity and 
relationship types and are therefore part of the structural schema. Some 
constraints, however, refer to the population at two or more different time 
points, or to events; these are therefore part of the behavioral schema. An 
example of the latter possibility, which refers to events of the account 
transfer type, could be “the amount transferred must be at least 10 euros”. 

1.2.5 Derivation Rules 

Through the informative function, information systems provide users with 
information about the state of a domain, either when they request it or un-
der predefined circumstances. 

If a system does not have an inference capability, it can provide only in-
formation received from the environment. In some cases, this may be all 
that is required, but users generally expect systems to have some ability to 
infer new facts from those already known. A very simple example is addi-
tion. If we give the system a sequence of numbers, we normally assume 
that it will at least be able to calculate the sum of them. 

Most systems have a certain inference capability. This capability re-
quires two main components: derivation rules and an inference mecha-
nism. A derivation rule is a piece of general domain knowledge that de-
fines an entity or relationship type in relation to others. Derivation rules 
are defined in the conceptual schema. The inference mechanism uses deri-
vation rules to infer new information. The way in which the inference 
mechanism works may vary from one information system to another; it is 
considered to be part of the internal structure of the system and is therefore 
not specified in the conceptual schema. We shall study derivation rules in 
Chap. 8. 

A derivation rule is an expression that defines how new facts can be in-
ferred from others. The concrete form of this expression depends on the 
conceptual modeling language used. In many cases, the expressions are 
formulas expressed logically, but conventional algorithms can also be 
used. For example, imagine that we want to define the derivation rule cor-
responding to the concept grandparent from the concept parent. A logical 
expression might be “A person gp is the grandparent of a person gc if gp is 
a parent of a person p and p is a parent of gc.” An equivalent algorithm 
that determines the four grandparents of person gc is: 

1. Take the two parents p1 and p2 of gc. 
2. Take the two parents gp1 and gp2 of p1. 
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3. Take the two parents gp3 and gp4 of p2. 
4. The grandparents of gc are gp1, gp2, gp3, and gp4. 

Derivation rules can be specific to a given domain (e.g. a bank), appli-
cable to all domains of a certain class (e.g. banking), or general (e.g. statis-
tical concepts). The conceptual schema must include all the derivation 
rules that can be used in a particular system, but we should explicitly de-
fine only those that are specific to our domain. The remaining derivation 
rules could be shared by all conceptual schemas for domains of the same 
class, or by all conceptual schemas. 

In practice, most derivation rules infer facts about the current population 
of an entity or relationship type from other facts about the current popula-
tion of different types, and the rules are then included as part of the struc-
tural schema. However, there is no reason why facts cannot be inferred 
from populations at previous points in time, or events inferred from other 
events, in which case the corresponding derivation rules are part of the be-
havioral schema.  

1.2.6 The Principle of Necessity for Conceptual Schemas 

A conclusion from the above analysis is that in order for an information 
system to perform its required functions, it must have some general 
knowledge about its domain and about the functions it has to perform. In 
the field of information systems, this knowledge is called a conceptual 
schema.  

Every information system embodies a conceptual schema. Without a 
conceptual schema, a system could not perform any useful function. 
Therefore, developers need to know the conceptual schema in order to de-
velop an information system. It is very important to realize that it is impos-
sible to design an information system with no knowledge of its conceptual 
schema. The only available options are to explicitly define the schema or 
to have it in the minds of the designers. 

Unfortunately, the need for conceptual schemas in the development of 
information systems is often overlooked or simply disregarded. The con-
sequences are negative, both in theory and in practice. It is therefore useful 
to summarize the role of conceptual schemas in a simple principle called 
the principle of necessity: 

To develop an information system it is necessary to define its conceptual 
schema. 
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The main purpose of conceptual modeling is to elicit the conceptual 
schema of the corresponding information system. Given that, as we have 
seen, any useful system needs a conceptual schema, we can easily reach 
the conclusion that conceptual modeling is an essential part of information 
system development.  

1.3 The Abstract Architecture of an Information System 

In the previous section, we introduced conceptual schemas. We shall now 
see the essential role that these schemas play in the architecture of infor-
mation systems. The term architecture is used to refer to the main software 
components and their relationships. In principle, there are several possible 
architectures for a given system, and choosing the most suitable one for a 
particular system depends on several factors, including the preferred archi-
tectural style and the hardware and software platform on which it must op-
erate. However, we do not need to consider all of these factors here. For 
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our purposes, it will be sufficient to consider the abstract architecture pro-
posed in an ISO report3 (Fig. 1.5). 

To illustrate this architecture and the role played by conceptual sche-
mas, let us take the example of a chess-playing system that can play 
against human players or other systems. The conventional means of repre-
senting the state of a chess game is a drawing such as the one shown in 
Fig. 1.6. However, not everybody uses exactly the same representation. 
Different icons can be used to denote the same piece. Some users may pre-
fer other graphical representations (e.g. a three-dimensional view), and in 
some cases text-based representations may be preferred (e.g. in machine– 
machine communication).  

An external schema is a form of representation of the state of the do-
main, and an external database is a virtual representation of the state of the 
domain in this external schema. Figure 1.6 may be considered an external 
database. External databases are virtual, in the sense that they do not 
physically or permanently exist within the system. 

In addition to a form of representation, external schemas also include 
aspects of the manipulation of this form, such as the language used to ask 
queries or to communicate events. In the above example, we again find a 
                                                      
3 Griethuysen (1982). 
 

Fig. 1.6. A representation of the state of a chess gameFig. 1.6. A representation of the state of a chess game
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number of possibilities. There are several textual (official) and graphical 
ways of representing a move (e.g. by a string such as “Rxc2” or by drag-
ging a piece to the desired square). 

There are usually several external schemas for a given domain, and it is 
not possible to single out one that satisfies all possible users and all possi-
ble uses. Therefore, the system must deal with several external schemas. 
To do so, the system needs to know the meaning of the representations 
used and the meaning of the alterations permitted.  

Table 1.2 shows a simplified conceptual schema for the example. Each 
piece is of a particular type (king, queen, bishop, etc.), has a color (black 
or white), and is located on a particular square. Squares also have a color. 
For the sake of clarity, we shall use “board square” (or just “square”) to 
denote a square that is part of the board, and “representation square” to de-
note a square drawn in a representation of the board (the external schema). 
A board square has a row code and a column code, which define its posi-
tion on the board. The conceptual schema may also include a derivation 
rule establishing that a board square is free if no piece is placed on it; oth-
erwise, it is occupied. 

There is a single conceptual schema and there may be one or more ex-
ternal schemas. External schemas are defined in terms of the conceptual 
schema. For instance, the correspondence between the conceptual schema 
in Table 1.2 and the external schema in Fig. 1.6 is as follows: 

• The board consists of 64 small representation squares corresponding to 
the board squares. 

• Representation squares are given the same colors as the corresponding 
board squares. 

• Each piece has a different icon, depending on its type and color. 

Piece
Square
PieceType
Color
Row
Column
RowCode
ColumnCode

LocatedAt (piece,square)
HasType (piece,pieceType)
PieceColor (piece,color)
SquareColor (square,color)
SquareInColumn (square,column)
SquareInRow (square,row)
RowHasCode (row,rowCode)
ColumnHasCode (column,columnCode)

Table 1.2. Conceptual schema for the chess-playing example, in the FOL language

Entity types Relationship types

Piece
Square
PieceType
Color
Row
Column
RowCode
ColumnCode

LocatedAt (piece,square)
HasType (piece,pieceType)
PieceColor (piece,color)
SquareColor (square,color)
SquareInColumn (square,column)
SquareInRow (square,row)
RowHasCode (row,rowCode)
ColumnHasCode (column,columnCode)

Table 1.2. Conceptual schema for the chess-playing example, in the FOL language

Entity types Relationship types
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• If a piece p is located on a board square s, then the icon corresponding 
to p is placed over the representation square corresponding to s. 

The correspondence between manipulations and external events is de-
fined similarly. For example, when the user drags a piece to a representa-
tion square, the conceptual meaning is a move of that piece to a board 
square, where it is then placed. 

The external processor is the architectural component that interacts with 
users. In theory, there is an external processor for each external schema. 
These processors receive messages from users (in the language of the ex-
ternal schema), translate them into the language of the conceptual schema, 
and forward them to the information processor. 

The information processor is the component that handles the messages 
sent by the users and performs any active function that may be delegated to 
the system. Specifically, if a message reports a domain event, the informa-
tion processor applies the corresponding effect function and checks that 
the resulting state is consistent. In the example given here, if a new move 
is received, the information processor has to check whether the move is 
valid and, if so, update the state of the game. 

To perform these tasks, the information processor needs to access and 
alter the state of the domain. It cannot use an external representation, since 
such representations are generally only partial and include aspects that 
bear no relation to the nature of the domain.  

For example, if the system were to use the representation shown in Fig. 
1.6 to check whether moving the black pawn to Column 2, Row 3 is a 
valid move, the information processor would have to check (among other 
things) that the representation square for Column 2, Row 3 does not have 
an icon on it. Neither “representation square” nor “icon” is a relevant con-
cept in the chess domain. It is preferable for the information processor to 
ask questions such as “Is the board square in Column 2, Row 3 free?”, 
where both “board square” and “free” are defined in the conceptual 
schema. For similar reasons, as we shall see in a moment, the information 
processor is also unable to use an internal representation. 

The procedure that is most natural to the information processor involves 
using a representation based on the conceptual schema, which is the in-
formation base. The information base is virtual, however, since it does not 
exist physically within the system. When the information processor asks it-
self questions such as “Is the board square in Column 2, Row 3 free?”, it 
behaves as if the information base really existed, when in reality the ques-
tion will be sent to the internal processor, which will then answer it using 
the physical database. 
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The representation of the state that the system has to maintain internally 
must allow efficient execution, among other things. This means that the in-
ternal representation must be designed taking into account technical fac-
tors. The internal schema is the form used internally by the system to rep-
resent the state of the domain, and the internal database is the 
representation of the state in that schema. Only the internal database exists 
physically. The internal schema also comprises the set of operations that 
may be invoked on the database. 

An internal schema for the example considered here that would be al-
most optimal in terms of the amount of space used (although not for other 
technical considerations) might be a file with the following record struc-
ture: 

 Pieces (PieceType, Color, Row, Column) 

In a record, PieceType might use one character (K for king, Q for queen, R 
for rook, and so on), Color might use one bit (0 for white and 1 for black), 
and Row and Column might use a single byte (number 1…8). Internal 
schemas, like external ones, are defined with respect to the conceptual 
schema. In our example, the correspondence might be:  

• The file has a record for each piece that is on the board. 
• The first field indicates the piece type, the second its color, the third 

the row number of the board square on which the piece is located, and 
the fourth the column number. 

• The color of the board square is not represented explicitly. The exter-
nal processor may infer it by adding the numbers of the row and col-
umn: if the result is even, the board square is black; otherwise, it is 
white. 

The internal processor receives the commands issued by the information 
processor and executes them, possibly accessing the internal database. For 
example, if it receives a command (in this case, a question) such as “Is the 
board square in Column 2, Row 3 free?”, the internal processor will check 
whether there is a record in the above file such that Row = 3 and Column = 
2. If there is no such record, the answer to the question will be positive; 
otherwise, it will be negative. In order to perform its task, the internal 
processor needs to know the internal schema, including its correspondence 
with the conceptual schema.  

Modern architectures of information systems are designed with three 
logical layers: presentation, domain, and data management. The equivalent 
of the external processor is located in the presentation layer, that of the in-
formation processor in the domain layer, and that of the internal processor 
in the data management layer. 
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1.4 Requirements Engineering 

In the previous section, we looked at the role of conceptual schemas in the 
architecture of information systems. Now we shall examine their role in 
the development of such systems. 

Conceptual schemas are the common base of external and internal 
schemas and their processors. Therefore, it is clearly not possible to design 
the architecture of an information system without a conceptual schema. 
Conceptual modeling must precede system design. 

The stage that precedes system design is called requirements engineer-
ing. One of the clearest definitions of this stage is: 

Requirements engineering is the branch of software engineering concerned 
with the real-world goals for, functions of, and constraints on software sys-
tems. It is also concerned with the relationship of these factors to precise 
specifications of software behavior, and to their evolution over time and 
across software families.4  

Requirements engineering is a complex process, because it involves a 
number of parties (users, designers, managers, etc.) who may all have dif-
ferent views, needs, and interests. Requirements engineering consists of 
three processes: 

• requirements elicitation; 
• requirements specification; 
• requirements validation. 

During requirements elicitation, the future users and the designers of the 
system analyze their particular problems and needs and the characteristics 
of the domain. On the basis of this analysis, they decide on the changes to 
be introduced into the domain and the functions that should be performed 
by the new information system. Requirements elicitation is a crucial proc-
ess, because it determines a significant proportion of the final success or 
failure of the overall project. In this phase, the configuration of the future 
system is decided, so any error in the decision often means that users will 
ultimately be presented with an inadequate system. 

 During this process, a conceptual schema of the existing and/or desired 
domain may be created if this is considered necessary to achieve a com-
mon understanding of the domain(s).  

In the requirements specification process, the functional and nonfunc-
tional requirements of the new system are defined. The result is a set of 
documents (called specifications) that precisely describe the system that 
                                                      
4 Zave (1997). 
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the users require and that the designers have to design and build. Func-
tional requirements describe what the system must do, while nonfunctional 
requirements describe the global properties of the system, such as response 
time or portability. 

The conceptual schema of an information system is the specification of 
its functional requirements. The conceptual schema specifies all the func-
tions (memory, informative and active) that the system must perform and, 
together with the specification of the nonfunctional requirements, corre-
sponds to the system specification. 

During requirements validation, the specifications are checked to ensure 
that they meet user requirements. In this phase, it is vital that the users un-
derstand exactly what the future system will be like before it is built. This 
is a crucial phase that can only be performed satisfactorily if the require-
ments have been precisely described. 

Validation can be performed in several nonexclusive ways. Two of the 
best known are: 

• To present the conceptual schema (and the system specification) in a 
language and form that are easily understood by users. If the concep-
tual modeling language used is not completely understandable to the 
users, it will be necessary to provide assistance in interpreting the lan-
guage, to use more familiar languages (not excluding natural lan-
guage), or to provide explanations of the schema and its behavior. 
When the conceptual schema is large, as is often the case, it may be 
necessary to divide its structure into fragments or views. 

• To build (partial) prototypes of the system. If the conceptual modeling 
language used is formal, prototypes can be generated automatically. 
This form of validation is usually more effective than the above 
method, but also more expensive. 

To summarize, then, conceptual schemas are created during the re-
quirements engineering stage and form the basis of the next stage, system 
design. 

1.5 Quality of Conceptual Schemas 

Now that we have seen what conceptual schemas are and the role that 
they play in the architecture of a system and in the system development 
process, we shall provide details in this section of the properties that these 
schemas must have if they are to fulfill their roles effectively. The quality 
of a conceptual schema is the degree to which these properties are present. 
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The quality of a conceptual schema should not be considered as an after-
thought — it should be aimed for in each step of the conceptual modeling 
process. 

A well-known property of conceptual schemas is the 100% principle, or 
completeness, which states that 

All relevant general static and dynamic aspects, i.e. all rules, laws, etc., of 
the universe of discourse should be described in the conceptual schema. 
The information system cannot be held responsible for not meeting those 
described elsewhere, including in particular those in application programs.5 

A conceptual schema is complete if it satisfies this condition. The rationale 
behind this principle is that a conceptual schema is the definition of the 
general domain knowledge that the information system needs to perform 
its functions; therefore, the conceptual schema must include all the re-
quired knowledge. If the conceptual schema is executable or the system is 
generated automatically from it, it follows that the system cannot contain 
anything not included in the schema. The principle of necessity for con-
ceptual schemas that we saw in Sect. 1.2.6 can be seen as a consequence of 
the 100% principle. 

An important conclusion that can be drawn from this principle is that the 
conceptual modeling language used must enable all of the domain’s rele-
vant aspects, including structural and behavioral aspects, to be described. 

A conceptual schema is correct if the knowledge that it defines is true 
for the domain and relevant to the functions that the system must perform. 
Figure 1.7 is a representation of the relationship between completeness and 
correctness. The left circle, D, represents the domain knowledge that the 
system needs to perform its functions. The right circle, C, represents the 

                                                      
5 Griethuysen (1982). 
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knowledge defined in the conceptual schema. In a complete conceptual 
schema, D is a subset of C. In a correct conceptual schema, C is a subset of 
D. In a complete and correct conceptual schema, D = C. 

Conceptual schemas are described in a particular conceptual modeling 
language. This language will have a set of rules that must be respected. A 
conceptual schema is syntactically correct if it respects all the rules of the 
language in which it is written. The syntactic correctness of a schema is 
independent of the domain. 

A conceptual schema should be understandable to its relevant audience. 
All members of the relevant audience should be able to correctly under-
stand the part of the conceptual schema that is relevant to them. 

In some cases, the same piece of knowledge about a domain may be ex-
pressed in two or more ways in a given language. The condition of sim-
plicity states that simple schemas are to be preferred, that is, schemas that 
use fewer language constructs or fewer complex constructs. Simplicity is 
related to understandability, because simple schemas are obviously easier 
to understand. 

Another property that has become popular is the principle of conceptu-
alization, which states that 

A conceptual model should only include conceptually relevant aspects, 
both static and dynamic, of the universe of discourse, thus excluding all as-
pects of (external or internal) data representation, physical data organiza-
tion and access as well as aspects of particular external user representation 
such as message formats, data structures, etc.6 

The justification for this is similar to that used in the previous point: if a 
conceptual schema is the basis for a system design, it should not include 
any design aspect, thus leaving the designers free to decide on all such 
characteristics. On the other hand, when a schema focuses only on concep-
tual aspects, it is simpler and therefore easier for users to understand. A 
conceptual schema that satisfies this condition is said to be design-
independent. 

Finally, we come to the property of stability, which is also referred to as 
flexibility, extensibility, or modifiability. A conceptual schema is stable if 
minor changes in the properties of the domain or in the users’ requirements 
do not entail major changes in the schema. 

                                                      
6 Griethuysen (1982). 
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1.6 A Brief History of Conceptual Modeling 

The conceptual modeling of information systems, as we know it today, is 
the fruit of research and development that have been carried out since the 
1960s. In this section we give a brief account of its evolution from early 
logical models to the current situation. We include a few references to key 
works. Many more are given in other chapters of the book. 

1.6.1 Logical Models 

Young and Kent (1958) presented what was probably the first specification 
language for information systems. Their objective was to define a system 
at an abstract level, independently of its implementation. To achieve this 
objective, they proposed a model consisting of input and output docu-
ments. Documents contain “information sets”, which may be related. Out-
put documents are produced when an input document is received or when 
a certain condition is satisfied. 

The model proposed by Young and Kent was the first of the logical 
models. A committee of CODASYL formed in 1959 proposed a similar 
model, called “An Information Algebra” (Bosak et al 1962). These models 
view information systems as systems that receive inputs, apply a transfor-
mation to them, and produce outputs. The models are called logical be-
cause the inputs, outputs, and transformation are described without refer-
ence to their physical aspects, such as data representation or file 
organization. In logical models, the conceptual schema is embedded in the 
definition of the inputs, outputs and transformation. 

Of the logical models, PSL (Problem Statement Language) made an im-
pact on academia, in the early 1970s, mainly owing to its stated goal of 
automatically generating the physical system from its specification. This 
goal was not achieved, but a pioneer computer-aided software engineering 
(CASE) tool called PSA (Problem Statement Analyzer) was developed 
(Teichroew and Sayani 1971; Teichroew and Hershey 1977). A language 
that had a more substantial impact on the profession was SADT (Marca 
and McGowan 1988). 

At about the same time, the work of Langefors (1974) came to promi-
nence in European research circles. Langefors was concerned with the re-
lationships between information systems and their domains. His work was 
the origin of what was termed “information analysis”, a precursor to struc-
tured analysis. 

Logical models were predominant in professional practice for more than 
30 years. The most widely used variant was “structured analysis” (Gane 
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and Sarson 1979; DeMarco 1979), a follow-up to “structured design”, 
which in turn was a follow-up to “structured programming”. Structured 
analysis appeared in the late 1970s, and until the 1990s formed the basis of 
most CASE tools. Over time, structured analysis partially converged with 
conceptual models by adopting elements of structural modeling and the 
concept of event.  

1.6.2 Semantic Data Models 

Database management systems started to appear during the 1960s. In the 
early 1970s, three data models dominated the field and competed among 
themselves: hierarchical, network, and relational models. All three were 
based on what Kent (1978) called the “record model”, which allows effi-
cient processing of data but is far removed from the conceptual model. Re-
cord models are to databases what logical models are to information sys-
tems. 

In 1972, the ANSI/X3/SPARC committee established a study group 
with the aim of investigating the potential for standardization in the area of 
database management systems. The main result was a report (ANSI 1975; 
Tsichritzis and Klug 1978) that had a significant impact. For our purposes 
here, the main contribution of the report was to identify a new database de-
scription level between the external and internal levels, that is, the concep-
tual level: 

…the Study Group has taken note of the reality of a third level, which we 
chose to call the “conceptual”, that has always been but never before called 
out explicitly. It represents the enterprise’s view of the structure it is at-
tempting to model in the data base. This view is that which is informally 
invoked when there is a dispute between the user and the programmer over 
exactly what was meant by program specifications. The Study group con-
tends that in the data base world it must be made explicit and, in fact, made 
known to the data base management system. The proposed mechanism for 
doing this is the conceptual schema. The other two views of data, internal 
and external, must necessarily be consistent with the view expressed by the 
conceptual schema.7 

The report appeared around the same time as the first semantic data 
models and fostered the development of many more during the 1970s and 
1980s. Conceptual modeling of information systems has its origin in these 
semantic data models. From an academic perspective, one semantic model 
that had a significant impact was Abrial’s binary model (Abrial 1974). 

                                                      
7 ANSI (1975). 
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However, the most popular semantic model has proved to be Chen’s ER 
(Entity–Relationship) model, published in Chen (1976). Codd (1979) pro-
vided an extension to the relational model (of his own invention) that al-
lowed it “to capture more meaning”. 

Semantic data models have frequently been influenced by the area of ar-
tificial intelligence known as knowledge representation. The central prob-
lem in this area is how to represent knowledge about a domain in such a 
way as to make it possible to build machines that are able to act intelli-
gently in the domain. This same problem affects semantic data models, so 
it is not surprising that there have been mutual influences. Modern knowl-
edge representation languages have their roots in the semantic networks 
proposed by Quillian in 1966 (Quillian 1968). Later, Minsky introduced 
the concept of a frame, which formed the basis of several popular lan-
guages, such as KRL, KL-ONE and PSN (Mylopoulos and Levesque 1984, 
Brachman and Levesque 1985; Davis et al. 1993). 

1.6.3 Conceptual Models of Information Systems 

The ANSI/X3/SPARC report identified the need for a conceptual schema 
of databases. However, a database is only one of the components of an in-
formation system and the report was not specific about the principles and 
contents of the conceptual schema. As a result, in 1977 the ISO/TC97/SC5 
committee created a study group with the aim of defining concepts for 
conceptual modeling languages. The work done by this group was re-
flected in a seminal report published in 1982 under the title Concepts and 
Terminology for the Conceptual Schema and the Information Base 
(Griethuysen 1982; Jardine 1984). 

As was the case with the ANSI report, this ISO report appeared at the 
same time as several conceptual models, many of which were extensions 
of semantic data models, and prompted the development of new models. 
The large number of existing proposals needed to be analyzed and com-
pared. With this aim, the IFIP WG8.1 work group launched a series of 
conferences called CRIS (Comparative Review of Information Systems 
Design Methodologies), which were held five times between 1982 and 
1994 (Olle et al. 1982, 1983, 1986, 1988; Verrijn-Stuart and Olle 1994). At 
the 1982 conference, 13 methodologies representing the state of the art at 
that time were presented. The central element in each of these methodolo-
gies was the conceptual model. 

The field of conceptual modeling has been influenced by related fields 
such as knowledge representation and software engineering. Indeed, these 
three areas have several points in common, which are often discussed in 
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joint meetings. The first two of these meetings were held in the USA in 
1980 and 1982 (Brodie and Zilles 1981; Brodie et al. 1984). One of the 
first conceptual modeling languages to explicitly acknowledge the influ-
ence of other fields was RML, a precursor of Telos (Borgida et al. 1985; 
Greenspan et al. 1994). 

1.6.4 Object Orientation 

The first effects of the object-orientation wave on the conceptual modeling 
of information systems appeared in the late 1980s. The idea of basing be-
havioral schema on entity types had a great impact on behavioral model-
ing. 

During the 1990s, various object-oriented conceptual modeling lan-
guages appeared, often as part of information system development meth-
ods. This did not reflect a diversity of theories or concepts, but rather nota-
tional differences. A number of standardization initiatives emerged as a 
result, one of which was instigated by the Object Management Group 
(OMG) in 1996. The main result was the Unified Modeling Language 
(UML), adopted by the OMG in 1997.  

1.7 Bibliographical Notes 

Sundgren (1975, Chap. 5) and Le Moigne (1978) described the functions 
of information systems in detail, although the terminology they used is 
now a little outdated. Johannesson (1995) gave a more modern view. Jack-
son (2001) provided many reflections on system perspectives and the func-
tions that systems may perform. There was a special issue of Communica-
tions of the ACM (ACM 1996) devoted to knowledge discovery in 
databases, an advanced component of the informative function. Motro 
(1994) analyzed the possible intensional answers to extensional questions. 
Papazoglou (1995) discussed the requirements for answering intensional 
queries. Nowadays, the autonomous execution mode of informative and 
active functions is often formulated using agents. Imam and Kodratoff 
(1997) gave an overall view of agents. There was a special issue of Com-
munications of the ACM (ACM 1994) devoted to intelligent agents. 

Each chapter of this book includes references to the most relevant work 
for the topic covered. Here, we mention only a few texts that provide an 
overview of conceptual modeling. An introduction can be found in Nijssen 
and Halpin (1989, Chap. 2) and Loucopoulos and Karakostas (1995, Chap. 
4). (Boman et al. 1997) is a textbook on conceptual modeling. Borgida 
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(1985a) and Borgida et al. (1985) emphasized principles, with specific ref-
erence to languages. Loucopoulos (1992) and Rolland and Cauvet (1992) 
provided a complete overview of conceptual models and conceptual mod-
eling, including numerous references. Mylopoulos (1998) offered a mod-
ern view of the field.  

The term ontology is used to mean a number of different things. Guarino 
and Giaretta (1995) gave an analysis of these meanings. In this chapter, we 
have adopted the definition proposed by Gruber (1993). The principle of 
necessity for conceptual schemas was suggested by Olivé (2005). 

Several conferences deal with the area of conceptual modeling. The 
most important series of conceptual modeling conferences is the Interna-
tional Conferences on Conceptual Modeling (known as ER), which was 
inaugurated in 1979, and these conferences have been held annually since 
1985.8 

There are several good textbooks on requirements engineering. (Davis 
1993) is a classic, although it does not focus specifically on information 
systems. Loucopoulos and Karakostas (1997) emphasized the explanation 
of the three processes that we have mentioned. Sommerville and Sawyer 
(1997) gave many practical recommendations. Nuseibeh and Easterbrook 
(2000) provided an excellent overview of the field. Boman et al. (1997) of-
fered a detailed explanation of the relationship between conceptual model-
ing and requirements engineering. Rolland and Prakash (2000) placed con-
ceptual modeling in the general context of modern requirements 
engineering. 

Bubenko (1977) was one of the first researchers to focus on the valida-
tion and verification of conceptual schemas. Gulla (1996) and Dalianis and 
Johannesson (1997) discussed the existing approaches to schema valida-
tion and described a prototype and the architecture of a schema explana-
tion component.  

The principles of 100% and conceptualization were first outlined in the 
ISO report mentioned above (Griethuysen 1982). Batini et al. (1992, Chap. 
6) and Davis (1993, Chap. 3) gave a detailed description of the desirable 
properties of conceptual schemas. Lindland et al. (1994) developed an in-
fluential framework for quality in conceptual modeling, which was evalu-
ated in (Moody et al. 2003). Moody (1998) completed a list of quality fac-
tors with metrics for measuring them. Katasonov and Sakkinen (2006) 
presented a framework for quality in the more general context of require-
ments engineering. 

                                                      
8 The name was originally International Conference on the Entity–Relationship 

Approach. 
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Fry and Sibley (1976) gave an excellent summary of the evolution and 
state of the art of database management systems in the early 1970s. Kent 
(1978) provided a critical analysis of these systems. A similar summary of 
business system analysis techniques for the same period was given by 
Couger (1973). Hull and King (1987) and Peckham and Maryanski (1988) 
analyzed the general features of semantic data models and described and 
compared the best-known models at that time. Fowler (1997) included a 
historical description of object orientation in conceptual modeling. See 
(Booch et al. 1999) for a brief history of UML. Mylopoulos (1998) pre-
sented a brief history of conceptual modeling. 

A partial, preliminary version of this chapter appeared in Olivé (2000a). 
The author gratefully acknowledges the permission given by Artech House 
to reuse that work here. 
 



2 Entity Types 

Determining the entity types that exist in a given domain and are relevant 
to an information system is a fundamental task in conceptual modeling. A 
clear understanding of entity types and their characteristics is therefore 
necessary. This is the focus of this chapter. 

Entity types may be grounded in several disciplines. For the purposes of 
conceptual modeling, the most appropriate discipline is probably cognitive 
science and, more specifically, the concept and classification theories that 
have been developed in that science. The first section of this chapter 
briefly reviews these theories. Additional material may be found in the 
bibliographical references cited at the end of the chapter. 

In the second section, we show that some concepts are natural, while 
others are human-made. An important task in information systems devel-
opment is concept design. 

In the third section, we define entity types. The concepts, as they are 
understood in cognitive science, are the starting point. In the fourth sec-
tion, we study how to represent the classification of objects into entity 
types in an information system. The fifth section explains the concept of 
data types. 

2.1 Introduction 

Classification is an activity that we can perform efficiently and that we 
need in order to structure our perceptions of the world and our knowledge 
about it. It is a basic activity, because without it we can neither understand 
the world around us nor act on it in the way we do.  

Classification is also fundamental for information systems, which, 
among other things, maintain a representation of the state of a domain. The 
same happens in the general field of computer science. 

Classification assumes the existence of a concept and of an object to be 
classified. The classification operation consists in determining whether or 
not the object is an instance of the concept. Classification may seem to be 
a simple operation, but it becomes very complex when we ask ourselves 
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what concepts are and when we try to explain how we determine whether 
or not an object is an instance of a concept. 

In cognitive science, several theories have been developed about the na-
ture of classification and concepts; they deserve to be reviewed, if only 
briefly, owing to their influence in conceptual modeling. 

2.1.1 Definitional Concepts 

The classical theory of concepts states that concepts, called definitional 
concepts, are sets of properties that we humans are able to observe in ob-
jects. This set of properties is called the intension of the concept. For ex-
ample, the concept of a house could consist of the properties “is a build-
ing”, “is a place where people live”, “has a fixed geographical location”, 
“has an owner”, etc. According to the classical theory, an object is an in-
stance of a concept if it has all the properties of that concept. Therefore, 
the classification operation consists in checking that the properties of the 
object include the properties of the concept. 

The same object may be an instance of several concepts. For example, 
an object might be an instance of the concepts book and gift, if it has all the 
properties of book and gift. 

Very often a property P of a concept is redundant, in the sense that if an 
object has all the other properties then it also necessarily has P. In the 
house example, the property “has a fixed geographical location” is redun-
dant, because if an object is a building then it must have a fixed geographi-
cal location. For this reason, the properties of a concept are classified as 
defining or nondefining. The defining properties are the necessary and suf-
ficient properties for an object to be considered an instance of the concept. 
The nondefining properties are redundant. If an object has the defining 
properties, it also has the nondefining ones. Therefore, the operation of 
classification simply involves checking that the properties of the object in-
clude the defining properties of the concept. 

An instance of a concept has all its properties (defining and nondefin-
ing), but it may have other specific properties. For example, a given house 
may also have the properties “is located in Toronto”, “is old”, and “is ex-
pensive”. In this respect, a concept is an abstraction of the properties of its 
instances, and classification is an abstraction operation, because it focuses 
only on some properties of the objects and ignores all the others. 
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2.1.2 Functions of a Concept 

Classification serves several basic functions in our mental life. For our 
purposes, the most important ones are cognitive economy and inference 
ability. Classification provides cognitive economy because it allows us to 
structure knowledge about objects into two levels: concept and instance. 
At the concept level, we find the properties (both defining and nondefin-
ing) common to all instances of the concept. At the instance level, we find 
only the concept of which the object is an instance, and the particular 
properties of that instance. In the absence of classification, we would have 
to associate every instance with all of its properties. Classification reduces 
the amount of information we have to remember, communicate, and proc-
ess; the extent to which it is reduced depends on the number of properties 
of the concept. 

Inference ability is related to the fact that not all the properties of a con-
cept need to be defining. There may be many nondefining properties which 
can be inferred without one needing to observe them directly. For example, 
the concept of a house includes the nondefining property “has an owner”. 
Once we have classified an object as a house we may infer that it has an 
owner, even if we have not observed this directly. 

2.1.3 Prototypical Concepts 

The classical view of concepts has dominated scientific thought for many 
years. In recent decades, however, this view has been seriously under-
mined by the work of psychologists, linguists, and philosophers. The most 
important problem encountered is that we are not able to give a clear and 
precise definition of everyday concepts, even though we do not find it dif-
ficult to classify objects into those concepts. Take, for example, the con-
cept of a dog. Except for biologists and other experts who are able to pro-
vide a precise definition based on its morphology or chromosomes, most 
people cannot give a definition of this kind and instead rely on nondefining 
properties (such as the shape or the sound) to define it, even though these 
properties may be shared by completely different objects. 

The difficulties inherent in the classical view have led scientists to ex-
plore alternative theories that explain concepts which are not strictly defi-
nitional. One of these theories is based on a probabilistic view. In this 
view, there is a probability that each property of a concept will be present 
in the instances of that concept. Some properties will be typical of the con-
cept, because they are shared by many instances. Other properties, how-
ever, will be atypical, in the sense that they are present only in a few in-
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stances. In this approach, the membership of an object in a concept will be 
more or less likely and not absolute as it was in the definitional view.  

A probabilistic concept may be represented by a prototype. A prototype 
is a set of clearly perceivable properties that some instances of the concept, 
but not all of them, have. A prototype describes only the properties of the 
best exemplars of the concept. A concept represented by a prototype is 
called a prototypical concept. An object is classified into a prototypical 
concept if it shares a sufficient number of its properties. The degree of an 
object’s membership in a concept will be a function of the number of 
properties shared with the prototype. 

For example, the prototype of bird could be the set of properties “feath-
ered”, “flies”, “small”, “eats insects”, and “sings”. Not all objects that we 
classify as birds have these properties: the most popular example in our 
field is that of penguins, which do not fly. Many of the properties of a pro-
totype are nondefining, but they are very effective in classification terms. 
The defining properties of the concept may not be easily perceivable. For 
example, the definition of bird will be based on biological facts that we 
cannot easily perceive. 

2.1.4 Exemplar-Based Concepts 

Both definitional and prototypical concepts are sets of properties that we 
should somehow store in our minds. However, some researchers challenge 
this mental association between a concept and a set of properties, and they 
prefer a theory of concepts based on exemplars. According to this theory, a 
concept is a set of exemplars, which may include all the known instances 
of that concept or only a subset of them. The theory holds that our minds 
store those exemplars associated with the name of the concept. 

In the exemplar view, the classification of an object into a concept con-
sists in comparing the object with the exemplars of the concept and calcu-
lating the degree of similarity of the object to the exemplars. The similarity 
determines the probability of classifying the object as an instance of the 
concept. 

2.2 Design of Concepts 

Many concepts may be considered natural, in the sense that their instances 
are objects that we consider natural in the world we live in, and are famil-
iar to many people, such as the concepts of a tree, dog, temperature, hurri-
cane, or meeting. Dictionaries give definitions of these concepts, which 
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help us to learn them and are a basis for communication between people. 
Some of these concepts may be an object of study in a scientific field; in 
this case, they are given more precise definitions. 

Often, however, the existing natural concepts are insufficient for people 
to act effectively in a concrete domain, or their definition is not precise 
enough. When this happens, it is necessary to invent new concepts or to 
give a more precise definition to an existing one. For example, in business 
it has been necessary to invent the concept of leasing in order to differenti-
ate a particular kind of contract. Another example is the concept of a cus-
tomer, which many companies need to define precisely in order to distin-
guish between people (or other companies) who buy, people who have 
bought in the past but not now, people who will possibly buy in the future 
but have not yet done so, etc. Different departments in a company may 
have different views on what a customer is. If they want to share the con-
cept of a customer, they will need to agree on a common definition. 

A further example is the concept of a project, as used by a company in 
the domain of project planning and control. Dictionaries give generic defi-
nitions of the concept, such as “a carefully planned piece of work to get in-
formation about something, to build something, to improve something, 
etc.”1 These are insufficient definitions. The company will need to design 
(or redesign) the concept to make it operational. The company may add, 
for instance, properties such as “it must be approved by an authorized 
body”, “it must have a plan”, or “it has a leader”.  

Defining new concepts and providing more precise definitions are de-
sign activities that require the participation and agreement of all the people 
who have to use those concepts in the corresponding domain. The design 
of concepts is a very important task in requirements engineering for infor-
mation systems. 

2.3 Definition of Entity Types 

Entity types are one of the most important elements in conceptual schemas 
and they play a fundamental role in the memory, informative, and active 
functions of information systems. Defining the entity types that are rele-
vant to a particular information system is a crucial task in conceptual mod-
eling. In this section, we study what is meant by an entity type and what its 
characteristics are. 

                                                      
1 Longman Dictionary of Contemporary English, 2005. 
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Entity types may be defined in several ways. A compact definition that 
captures their essence and is reasonably precise might be: “An entity type 
is a concept whose instances at a given time are identifiable individual ob-
jects that are considered to exist in the domain at that time.” The objects 
that are instances of an entity type are called entities. An object may be an 
instance of several entity types.   

First of all, this definition states that an entity type is a concept. There-
fore, the concept theories developed in cognitive science are, in theory, 
applicable to entity types. However, most of the work in conceptual mod-
eling is based on definitional concepts. In this book, we also adopt this 
view of concepts. 

Secondly, the definition states that an instance of an entity type is an in-
dividual object. This excludes the possibility of entities that correspond to 
two or more objects in the domain. Normally, this aspect does not pose 
problems, but doubts may arise in some cases. For example, if married 
couple is an entity type, what are its instances? According to the definition, 
such an instance cannot be two objects (or people, in this particular exam-
ple). It must be a single object: in this case, an abstract object that repre-
sents a couple. This object will be related to the two people who form the 
couple, but these relationships will be instances of relationship types, as 
we shall see in the next chapter. 

Thirdly, the definition states that the instances of entity types must be 
identifiable objects. This means that there must be some mechanism in the 
domain that allows one object to be differentiated from another, and that 
this mechanism is known to the information system. Such mechanisms are 
the references, which are discussed in Chap. 5. According to the definition, 
domain objects that cannot be identified cannot be entities. This situation 
does sometimes arise: for example, in the domain of a forest we may have 
objects that are instances of a tree; if, however, we cannot differentiate be-
tween the (many) trees in the forest then tree cannot be an entity type.  

Finally, the definition states that the instances of an entity type at a 
given time point are objects “… that are considered to exist in the domain 
at that time.” This is the hardest aspect of the definition, but it is important 
in modeling dynamic domains. An object may be considered an instance of 
an entity type at one time point, but not so at another one. 

The definition is neutral with respect to “who” believes an object exists 
in the domain at a given time, but we may assume that normally this is the 
people who observe and act in the domain. Doubts may sometimes arise 
because, although some people may believe that an object exists at a point 
in time, other people may believe that it does not (at least at that point). In 
such cases, an effort must be made to make the definition of the concept 
more precise and to reach agreement. 
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An example of a problem-free concept might be that of a department in 
the domain of a company. If an object is an instance of this entity type at a 
given time, it is because the object exists at that time. If the object has not 
been created (i.e. does not exist) at time t, it cannot be a department at t. If 
a department object existed previously but does not exist now, it is not a 
current instance of the department concept. 

An example that might, in some situations, cause confusion is that of a 
person. According to the definition, an object may be considered an in-
stance of a person at a given time if it exists at that time. But what exactly 
does existing at a given time mean? In some domains, people who have 
died do not exist anymore, but in other domains it may be reasonable to 
consider that, once born, people exist forever; if necessary, a distinction 
can be made between people who are alive and dead. 

Another example that may cause confusion is the entity type raise re-
quest. An instance of this entity type is a request for an increase in salary 
by an employee, at some instant. Let us assume that a company takes into 
consideration the requests of its employees, that these requests are proc-
essed during a time interval in which managers study them, and that even-
tually a decision is made. In this example, a request may be considered to 
exist only at a given point in time (when the request is made), that it exists 
while it is being processed (until the decision is made), or that it exists for-
ever. Which of these is the most suitable interpretation of the request must 
be defined in the domain. This decision will have an effect on the answer 
to questions such as “What raise requests do we have at this moment?” 

A few additional examples of entity types are provided below to illus-
trate the explanation given above: 

• Stamp in collection. In a system that records the state of a stamp col-
lection, an instance of this entity type at a given time would be a stamp 
that is part of the collection at that time. A specific stamp will be an 
instance of Stamp in collection while it is part of the collection. 
Stamps must be identifiable, even when there are two or more exem-
plars of the same issue. If it is not possible to distinguish between two 
stamps of the same issue, then it will be necessary to define a different 
entity type, such as Stamp issue in collection. An instance of this type 
would therefore be a stamp issue of which there are one or more ex-
emplars in the collection. 

• Project team. An instance of this type is an abstract object. It could be 
considered that, in the domain, at a given time, there is an instance of 
Project team for each project existing at that time. This instance may 
be related to each person who has worked on the project for a certain 
time. It can also be related to the person who manages the team. 



44      2 Entity Types 

• Software fault. This may be an entity type if its instances are identifi-
able. We may assume that software faults have an identifier (a number, 
for example). It can be considered that an instance of this type exists at 
a given time if it has been reported at that time or before, and has not 
yet been solved. Alternatively, we may consider that a software fault 
exists because it has been reported and as a result exists forever. In this 
case, we might also have the entity type Corrected software fault, to 
represent the software faults that have already been corrected. Note 
that the answers to questions such as “Which software faults do we 
have?” will be quite different depending on the interpretation. 

• Metal. An entity of this type is a specific metal, such as iron, copper, 
or gold. 

2.3.1 Names 

An entity type must have a name, which must be unique in a schema. The 
names must be significant to the persons who act in the domain. It is im-
portant to give “good” names to entity types. A useful guideline is that the 
name of an entity type must be a common noun in the singular form, pos-
sibly accompanied by one or more adjectives. When this guideline is fol-
lowed, and N is the name of an entity type, the following sentence is well 
formed: 

An instance of this entity type is a (an) N. 

Note that the examples given up to now in this chapter follow this 
guideline (person, department, tree, married couple, etc.). However, the 
guideline would not be followed (and the sentence would not be well 
formed) by plural nouns (such as customers or people), adjectives (such as 
expensive), and verbs (such as to buy a product), etc.  

Entity types should, when necessary, have an explicit definition in natu-
ral language. The definition must be comprehensible to both users and de-
signers.  

2.3.2 Population 

The population of an entity type E at a time t is the set of instances of E 
that exist in the domain at t. In general, the population of an entity type is 
time-varying during the lifetime of the information system. However, two 
cases of entity types are particularly noteworthy: constant and permanent 
entity types.  
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An entity type is constant if its population is the same at all times. For 
example, Metal and River are likely to be constant in most information 
systems.  

An entity type is permanent if its instances never cease to be instances 
of it. The population of a permanent entity type cannot decrease. If E is a 
permanent entity type and e is an instance of E at t, then e will be an in-
stance of E at any later time (during the lifetime of the information sys-
tem). For example, Invoice is likely to be permanent in most information 
systems. Once an invoice has been issued, it exists forever. It is easy to see 
that constant types are permanent too. 

2.3.3 Subsumption 

In general, the population of an entity type is independent of that of the 
other types defined in a schema. However, in some cases the population of 
an entity type must necessarily be included in that of another type. We say 
that E2 subsumes E1 if all instances of E1 must also be instances of E2. One 
can also say that E1 is a subtype of E2 and that E2 is a supertype of E1. For 
example, Person subsumes Woman: the population of Woman must neces-
sarily be included in that of Person. Woman is a subtype of Person and 
Person a supertype of Woman. 

It is interesting to see how subsumption is interpreted in the definitional 
theory of concepts, which we studied in Sect. 2.1. As stated in relation to 
that theory, a concept is defined by a set of defining properties, and an ob-
ject is an instance of a concept if the object has the defining properties of 
that concept. Therefore, according to the definitional theory, a concept C2 
subsumes a concept C1 if the defining properties of C2 are a subset of those 
of C1 (or, in other words, if C2 has fewer properties than C1). The concept 
of Person subsumes Woman because women have the defining properties 
of persons and of other concepts (such as being female). 

The subsumption of entity types happens very often and has profound 
implications for conceptual modeling. A detailed study of subsumption is 
undertaken in Chap. 10.   

2.4 Representation in an Information System 

In order to be able to perform their functions, information systems must 
have a representation of their domain. With respect to the topics studied in 
this chapter, this means that an information system must have a representa-
tion of: 
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• the objects in the domain; 
• the entity types; 
• the classification of objects into entity types 

(see Fig. 2.1). 

The objects in the domain are represented in the information base. Re-
call that the information base is virtual (in the sense that it does not neces-
sarily exist), but it is a representation of the knowledge that the system has 
of the state of the domain. 

The information base contains a symbol (which is, in general, chosen 
arbitrarily) for each domain object represented in the information system. 
In Fig. 2.1, the person named Charlotte is represented in the information 
base by the symbol “Charlotte”. We say that the object is represented by 
that symbol, or that the domain object has that symbol assigned to it in the 
information base, or that the symbol denotes the domain object. The con-
crete form of the symbol is irrelevant at the conceptual level. We only 
need to assume that such symbols do exist, and that there is a biunique cor-
respondence between the domain objects represented in the information 
system and the symbols that represent them in the information base. In this 
book, we normally designate these symbols by words beginning with a 
capital letter. When confusion is unlikely to arise, however, we do not dis-
tinguish between objects and their symbols.  

Fig. 2.1. Classification of objects in a domain
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Entity types are represented in the conceptual schema. The schema con-
tains a symbol (in general, chosen arbitrarily) for each relevant entity type. 
As before, the concrete form of the symbol is irrelevant at the conceptual 
level. We only need to assume that such symbols do exist, and that there is 
a biunique correspondence between the entity types represented in the in-
formation system and the symbols that represent them in the conceptual 
schema. In this book, we normally designate these symbols by words be-
ginning with a capital letter. When confusion is unlikely to arise, however, 
we do not distinguish between entity types and their symbols. 

The classification of an object into an entity type is represented in the 
information base. A classification of an object into an entity type is called 
a fact. A classification is represented by means of a relationship between 
the symbols representing the object and the entity type. At any time, every 
object represented in the information base must be classified into one or 
more entity types. 

Internally, the representation of objects, entity types, and classifications 
may take many forms. At the conceptual level, we abstract from the details 
of the representation, but we need to define what must be represented and 
state some of the properties of the representation. To this end, we use a 
conceptual modeling language. There are several conceptual modeling 
languages, but all of them may be formalized in the language of first-order 
logic, with some extensions. Most professional languages have an associ-
ated textual and/or graphical representation. In this book, we sketch the 
formalization in first-order logic, and explain the use of UML to define 
conceptual schemas. 

2.4.1 State of the Information Base 

The state of an information base at a given time is the set of facts that it 
contains at that time. As we have seen, the classifications of objects into 
entity types are facts in the information base. Therefore, the state of the in-
formation base includes the set of classifications of objects. In the next 
chapter, we show that the state also includes relationships. 

There are two kinds of information base, depending on the facts that 
they contain at a given time. A current-state information base contains at 
time t only the facts that hold in the domain at t. A temporal information 
base contains at time t the facts that hold in the domain at t and the facts 
that have held at any time before t.  

Current-state information bases are insufficient when the functions of 
the information system require that past facts be remembered. For exam-
ple, an information system may be required to answer questions such as 
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“Who was a student a year ago?” Temporal information bases “remember” 
the facts that were true in the domain in the past, and are thus able to an-
swer questions about the past.  

A conceptual model is referred to as current-state or temporal if it as-
sumes that the information base is, respectively, current-state or temporal. 
Most conceptual models, including UML, are current-state.  

2.4.2 Logical Representation 

In logic, we represent an entity type by a unary predicate, whose argument 
denotes an object2. We write predicate names starting with a capital letter 
and without blanks, for example the predicates Woman and Student. In the 
formulas, the variables start with a lowercase letter. 

The classification of object A into an entity type E is represented by the 
formula E(A), where E is the unary predicate that represents the entity 
type. For example, Woman(Charlotte) means that Charlotte is an instance 
of Woman. In logic, formulas consisting of a single predicate with constant 
arguments are called facts, and that is why formulas such as E(A) are 
called entity facts, or simply facts. 

The same object e may be an instance of several entity types at the same 
time. In this case, there will be a formula Ei(e) in the information base for 
each Ei of which e is an instance at that time. For example, if Charlotte is 
also a student, the information base will also contain the fact Stu-
dent(Charlotte). 

In logic, we represent the statement that E1 is a subtype of E2 by the 
formula3 

E1(e) → E2(e) 

For example, to state that Woman is a subtype of Person, we write: 

Woman(p) → Person(p) 

In current-state information bases, it is not possible to formalize the 
statement that a given entity type is constant or permanent.  This is a con-
straint that can be formalized only in temporal information bases. 

                                                      
2 In Chapter 17, we shall study an alternative logical representation of entity types. 
3 In order to simplify the notation, variables without quantifiers are assumed to be 

universally quantified in the front of the formula. The complete formula would 
be ∀e (E1(e) → E2(e)). 
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2.4.3 Representation in UML 

The most widely used graphical representation of an entity type is un-
doubtedly a rectangle with the name of the entity type inside. UML uses 
this representation too.4 Usually, the name starts with a capital letter. Fig-
ure 2.2 shows an example of five entity types.   

In UML, we represent the statement that E1 is a subtype of E2 by means 
of a solid-line path from E1 to E2 with a hollow triangle at the end of the 
path where it meets E2. Figure 2.2 shows an example: Woman is a subtype 
of Person. 

In UML, it is not possible to formally define that an entity type is con-
stant or permanent.  However, we can assume that there are two predefined 
constraints (constant and permanent) whose formalization is implicit: the 
tools that analyze schemas or generate code will understand their meaning 
and will behave accordingly.  

We shall study in Chap. 17 the use of a UML mechanism, called a 
stereotype, to define new predefined constraints. For the moment, it suf-
fices to say that to indicate that an entity type is constant or permanent we 
write {«constant»} or {«permanent»}, respectively, near the name of the 
entity type. In Fig. 2.2, we define in this way that Book is a permanent 
type, and that River is constant. A text string in braces {C} placed near the 
                                                      
4 In strict terms, UML uses rectangles for object classes. Entity types should be 

defined as classes with the standard stereotype «type». A class-stereotyped 
«type» specifies a domain of objects without defining the physical implementa-
tion of those objects. For the sake of readability, we assume in this book, unless 
stated otherwise, that UML rectangles without either keywords or stereotypes 
include the stereotype «type».   

Fig. 2.2. Graphical representation of five entity types in UML. Woman in a 
subtype of Person
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symbol of an entity type means that the population of that entity type must 
satisfy the constraint C. In this case, the constraint is stereotyped «con-
stant» or «permanent», which means that it is a predefined constraint.  

 Normally, the classification of a concrete object into one or more entity 
types is not represented graphically. When it is done, UML uses the same 
notation as for entity types, but in place of the name of entity types there 
appears an underlined concatenation of the object symbol, a colon (“:”) 
and the name or names of the entity types. The convention for showing 
multiple entity types is to separate their names by commas. Figure 2.3 
shows two examples. A diagram that shows entities and their relationships 
is called an object diagram. 

2.4.4 Conceptual Models: Single or Multiple Classification 

As we have said, in the general case an object may be an instance of two or 
more entity types at the same time. However, it is necessary to distinguish 
between two different cases, which leads to an important classification of 
conceptual models.  

A multiple-classification model is one which allows an object to be an 
instance of two entity types, E1 and E2, such that 

• E1 does not subsume E2; 
• E2 does not subsume E1; 
• no E3 is subsumed by both E1 and E2 

A single-classification model is one which does not admit multiple clas-
sifications. The logic language and UML are multiple-classification lan-
guages. 

Figure 2.3 shows an example of a multiple classification. A person 
(Charlotte) is an instance of Woman and Student, but Woman does not 
subsume Student, nor does Student subsume Woman, and there is no entity 
type that is subsumed by both Woman and Student. There are women who 
are not students, and students who are not women. 

Mary:Woman Charlotte:Woman,Student

Fig. 2.3. Graphical representation of a classification into entity types. Mary and 
Charlotte are instances of Woman. Charlotte is an instance of Student too

Mary:Woman Charlotte:Woman,StudentMary:Woman Charlotte:Woman,Student

Fig. 2.3. Graphical representation of a classification into entity types. Mary and 
Charlotte are instances of Woman. Charlotte is an instance of Student too
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Single-classification models do not allow a direct representation of 
situations such as those in Fig. 2.3. The solution is the intersection type, 
which we look at in Chap. 10. Informally, the idea consists in defining a 
new type, FemaleStudent, which is subsumed by Woman and Student. 
People who are instances of both Woman and Student (such as Charlotte) 
would be defined as direct instances of FemaleStudent and, therefore, they 
would also be instances of Woman and Student. 

2.4.5 Conceptual Models: Static or Dynamic Classification 

In the general case, an object may be an instance of different entity types at 
different times. However, this is not allowed in all conceptual models. We 
say that a dynamic classification model is one which allows objects to be 
instances of different entity types at different times. Otherwise, we say that 
it is a static classification model. Both logic and UML allow dynamic clas-
sification. 

Static classification models assume that an object appears (is created) in 
the information base at some point in time and is classified as an instance 
of one or more entity types at that time, and that these classifications do 
not change during the object’s lifespan. Once the object ceases to exist in 
the information base, it cannot reappear later on. 

A static classification model would not allow us to define, for example, 
the entity types Person, Student, and Employee, assuming that a given per-
son may at a given time be a student, and later an employee, who (possi-
bly) ceases to be a student. In static classification models, a symbol is re-
lated to one or more entity types when it appears for the first time in the 
information base, and these cannot be changed.  

2.4.6 Properties of the Representation 

Regardless of the language that is used, the representation of objects and 
entity types in an information system, and the classification of objects into 
entity types (as shown in Fig. 2.1), must all satisfy certain properties. 
Completeness, correctness, a nonempty population, and nonredundancy 
are the most important of these properties. Below, we describe each of 
them in turn. 

2.4.6.1 Completeness 

This property states that if, in the domain, an object o is considered to be 
an instance of an entity type E at a given point in time, and we want this 
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fact to be represented in the information system, then the information base 
must contain a symbol representing o and a representation of the classifica-
tion of o into entity type E at that time.  

Completeness requires that the information base includes a representa-
tion of the relevant classifications of the domain objects. This implies that 
the schema includes a representation of the entity types, and that the in-
formation base includes the relationships between the symbols and the rep-
resentations of the entity types into which they are classified.  

This property is necessary for the completeness of the conceptual 
schema. In general, completeness cannot be formally verified. It is part of 
the task of schema validation to ensure that this property is satisfied. 

2.4.6.2 Correctness 

This property states that if the information base contains a classification of 
a symbol s into an entity type E at a given instant, it must be considered 
that the object denoted by s in the domain is an instance of entity type E at 
that instant, and this fact should be represented in the information system. 

Correctness requires that the representations in the information system 
(information base and conceptual schema) be correct and relevant. This 
property is necessary for the correctness of the conceptual schema. In gen-
eral, correctness cannot be formally verified. It is part of the task of 
schema validation to ensure that this property is satisfied. 

2.4.6.3 Nonempty Population 

It must be possible for any entity type defined in the schema to have a 
nonempty population. Otherwise, an entity type would not have any in-
stance during the system’s lifetime. In information systems engineering, 
these entity types are not particularly relevant. An example of an entity 
type that would always have an empty population is SingleAndMarried-
Person.  

The inclusion in the schema of an entity type whose population must 
always be empty does not influence the completeness and correctness, but 
it does affect the simplicity of the schema, as it would contain a superflu-
ous entity type. 

In general, it is not possible to formally verify that an entity type neces-
sarily has a nonempty population at a given time. Even if a conceptual 
schema includes an entity type E, this does not imply that users must 
communicate that some object is an instance of E at a given time. They 
might never do so, and so E would always have an empty population. It is 
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part of the validation phase of a conceptual schema to ensure that there is 
an instance of an entity type at a certain time. 

In some cases, however, it is possible to formally verify that an entity 
type may have a nonempty population at a given time. An entity type is 
satisfiable if it may have a nonempty population at a certain time. Simi-
larly, an entity type is unsatisfiable if it must always have an empty popu-
lation. The problem of the satisfiability of an entity type involves deter-
mining whether or not the entity type is satisfiable.  

A simple example of an unsatisfiable entity type is SingleAndMarried-
Person. If the schema includes the constraint that a person cannot be single 
and married at the same time, then SingleAndMarriedPerson is unsatisfi-
able. This type would always have an empty population, and should there-
fore not be part of the schema.  

2.4.6.4 Nonredundancy 

Two entity types are redundant if they must have always the same popula-
tion. A schema should not include redundant entity types. For example, a 
schema could include the entity types Person and Employee. If the domain 
is interested only in employed people then, possibly, the population of the 
two entity types will be always the same. Redundancy must not be con-
fused with the fact that a given entity type may have several alternative 
names (synonyms). 

The inclusion in the schema of a redundant entity type does not influ-
ence the completeness and correctness, but it does affect the simplicity of 
the schema, as it would contain a superfluous entity type. 

In general, it is not possible to formally verify that two entity types will 
or will not always have the same population. If a schema contains two en-
tity types E1 and E2, it is possible that every time users communicate that 
an object is an instance of E1 they will also communicate that it is an in-
stance of E2. The result of this would be that E1 and E2 have the same 
population during the system’s lifetime. It is part of the validation phase of 
a conceptual schema to ensure that entity types normally have different 
populations at a given time.  

In some cases, however, it is possible to formally verify that two entity 
types E1 and E2 must always have the same population. The entity types E1 
and E2 are redundant if E1 subsumes E2 and E2 subsumes E1. The subsump-
tion problem of two entity types involves determining whether or not an 
entity type is subsumed by another one.  

As a simple example of a redundant entity type, let us consider the type 
TechnicalDirector. If a given person is a Director and a Technician he will 
be also an instance of TechnicalDirector. If, however, the schema includes 
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the constraint that all directors must be technicians, TechnicalDirector and 
Director become redundant, and one of the two should not be in the 
schema. 

2.5 Data Types 

A lexical entity type is an entity type whose instances are words (the lexi-
con) in the language used in the domain, which may be written or spoken 
(i.e. uttered). The lexicon includes not only the words that appear in dic-
tionaries, but also those that have been invented for a particular use in the 
domain. 

In theory, it would seem that we need only one lexical entity type, 
whose instances would be all possible words. In fact, many conceptual 
schemas include such a type, named String or similar. The instances of 
String may be any concatenation of characters from a predefined set, 
which includes letters, digits, and several special characters. However, it is 
often necessary to define types that are more specific than String. For ex-
ample, in a domain that deals with books, we might define the type ISBN 
code, whose instances are all valid ISBN codes. In a domain dealing with 
Web pages, we might define the type URL, whose instances are all syntac-
tically valid URLs. 

Most conceptual models use data types rather than lexical entity types. 
Data types may be seen as an extension of lexical entity types. Essentially, 
a data type consists of a set of values and a set of lexical representations, 
or literals. The set of values is the population of the data type, and is called 
the value space of the type. The set of lexical representations is called the 
lexical space of the type. Each value in the value space is denoted by one 
or more literals of the lexical space. Values are represented in an informa-
tion base by means of one of their literals. The value space of a data type 
does not change over time. For this reason, data types are constant entity 
types. 

For example, consider the data type Decimal, which is used to represent 
decimal numbers with an arbitrary precision. The value space of Decimal 
is the set of values i × 10-n, where i and n are integers and n ≥ 0. The lexi-
cal space of Decimal is the set of finite sequences formed by the decimal 
digits (from 0 to 9) with a point, optionally preceded by a sign. For exam-
ple, the literals -1.23, +1.543233, and 210 denote values of Decimal. 

Conceptual models include a predefined set of data types and a mecha-
nism for defining new ones. The examples used in this book use the data 
types defined in the XML Schema language. This language provides a rich 
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set of data types and a powerful mechanism for defining new ones. The 
predefined XML Schema data types that we use include the following: 

• String. The values are finite-length sequences of characters. 
• Boolean. The values are {true, false}, represented by the literals {true, 

false, 1, 0}. 
• Decimal, described above. 
• Integer. Decimal values without digits in the fractional part. The space 

of values is the set {…, -2, -1, 0, 1, 2, …}. 
• PositiveInteger. Positive integers. The value space is the set {1, 2, …}. 
• NonNegativeInteger, which we shall call Natural. These are the posi-

tive integers and zero. 

XML Schema also includes many data types related to time. The ones 
that we shall use most often in this book are as follows: 

• Date. The space of values is the set of dates in the Gregorian calendar. 
The lexical representation of a date is CCYY-MM-DD, where CC 
represents the century, YY the year, MM the month, and DD the day. 

• Time. The value space is the set of times in a day, starting from mid-
night. These times are represented by literals of the form HH:MM:SS, 
which denote the hour, minute, and second, respectively. Seconds may 
also be represented as a Decimal, thus allowing varying degrees of 
precision.  

• DateTime. The values are specific instants. The value space comprises 
all valid combinations of Date and Time. These are represented by lit-
erals of the form CCYY-MM-DDTHH:MM:SS, where CCYY-MM-
DD and HH:MM:SS are as before, and T is a separator. 

• gYearMonth. The value space is the set of months in the Gregorian 
calendar. Normally, we omit the prefix g (for Gregorian) and write 
YearMonth. The lexical representation of a month is CCYY-MM. 

• gYear. The value space is the set of years in the Gregorian calendar. 
Normally, we omit the prefix g (for Gregorian) and write Year. The 
lexical representation of a year is CCYY. 

• Duration. The values are temporal durations. The value space is a six-
dimensional space where the coordinates are the Gregorian year, the 
month, the day, the hour, the minute, and the second. Duration is rep-
resented by literals of the form  

    PnYnMnDTnHnMnS  

 where nY represents the number of years, nM the number of months, 
nD the number of days, nH the number of hours, nM the number of 
minutes, and nS the number of seconds; T is a separator. The number 
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of seconds may contain decimal digits. In all cases, n may be any inte-
ger. An example of a duration is P1Y2M3DT10H30M. 

2.5.1 Data Types in UML  

UML assumes that there are primitive data types (such as Boolean, Inte-
ger, UnlimitedNatural, and String), which are defined outside UML. Other 
data types may be defined if necessary. Data types are not usually repre-
sented graphically, but if necessary they can be represented using the rec-
tangle symbol and the keyword «dataType». Figure 2.4 (left) shows an ex-
ample (Date).  

An enumeration is a particular kind of data type whose values are enu-
merated in the model as enumeration literals. Figure 2.4 (right) shows an 
example. DayOfWeek is a data type comprising seven values. An enumera-
tion may be shown using a rectangle and the keyword «enumeration». The 
name of the data type is placed in the upper compartment. A list of enu-
meration literals may be placed, one to a line, in the bottom compartment.  

2.6 Bibliographical Notes 

Smith (1988) provided an excellent brief explanation of the theories and 
functions of concepts in cognitive psychology. More details can be found 
in (Smith and Medin 1981). Stillings et al. (1995, Chap.3) also gave an ex-
planation of these theories, which is more detailed in certain aspects, in the 
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context of the more general field of cognitive science. (Lakoff 1987) is a 
must for a complete analysis of prototypical concepts and their implica-
tions. Chapter 2 of that book is especially relevant for its critical review of 
existing theories.  

We have mentioned that entity types may be grounded in several disci-
plines. In this chapter, the option chosen has been cognitive science. A dif-
ferent option could be a branch of philosophy. (Artz 1997) is a short text 
that reviews several theories of concepts that have been proposed in phi-
losophy and discusses their relevance to classification. Parsons and Wand 
(2000) provided a view based on Bunge’s ontology. 

Wegner (1987) gave a complete description of classification and dealt 
with aspects from the fields of biology, mathematics, logic, and program-
ming. Booch (1991, Chap. 4) explained classification, mainly in the con-
text of object-oriented software engineering. 

Motschnig-Pitrik and Mylopoulos (1992) provided a detailed descrip-
tion of classification in the conceptual modeling of information systems, 
including an analysis of how it is dealt with in several languages. Parsons 
(1996) and Parsons and Wand (1997) directly related concept theories to 
conceptual modeling.  

Most work in conceptual modeling has been based on definitional con-
cepts, although some research, such as that carried out by Dubitzky et al. 
(1999), has been based on prototypical concepts.  

Only a few books explain entity and relationship types in detail, inde-
pendently of particular languages. Two noteworthy exceptions are (Kent 
1978) and (Tsichritzis and Lochovsky 1982). There are, however, many 
books that focus on a particular language or method and explain specific 
concepts, such as (Nijssen and Halpin 1989), (Batini et al. 1992), and 
(Martin and Odell 1995). Chen (1983) gave one of the first analyses of the 
correspondence between entity types and parts of English sentences. 

The first two properties of the representation of classification (correct-
ness and completeness) are normally implicit, and very few authors men-
tion them explicitly. Robinson (1979) was one of the first. A more recent 
work is (Martin and Odell 1995). An explicit formulation for object-
oriented software engineering can be found in (Meyer 1997, p. 171). The 
nonempty population and nonredundancy properties were presented by 
Parsons and Wand (1997). The temporal properties of the populations of 
entity types were presented by Costal et al. (1997). 

Section 2.5 is based on the W3C recommendation described in W3C 
(2004). Parent et al. (2006) provided a comprehensive set of data types for 
spatial and temporal applications.  
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2.7 Exercises 

2.1 Look up the definitions of the concepts mother, book, and city in your 
favorite dictionary. Analyze the properties included in these definitions, 
and determine whether the concepts are definitional or prototypical. 
 
2.2 Assume that you want to build a system that, among other things, re-
cords the broadcast schedule of several TV or radio channels on a daily ba-
sis. Design a set of categories (news, movies, etc.) that allows you to clas-
sify all the broadcasts. Try to define these concepts precisely enough so 
that other people will not find it too hard to classify a particular broadcast. 
Can the same broadcast be classified into two or more of the above catego-
ries? 
 
2.3 Assume that you have to develop a system that records the families 
who have existed or exist in a community (such as a town) and their time-
varying composition. Try to design the concept of a family for this system. 
Check that your definition of family answers the following questions: 

• When does a family start? 
• When does a family cease to exist? 
• When does a person become a member of a family? 
• Can a person be a member of several families? 
 
2.4 Define the entity and data types needed by a system that has to store 
information about the papers published in a scientific journal.  
 
2.5 Give an example of an entity that is an instance of two entity types that 
are not mutually subsumed.  
 
2.6 We have seen that the population of an entity type may be constant, 
permanent, or unconstrained. In general, if E1 is a subtype of E2, the con-
straint of the population of E1 is independent of that of E2. Give an exam-
ple of each of the nine possible combinations. 

 



3 Relationship Types 

Relationship types are another important element in conceptual schemas, 
because they also play a fundamental role in the memory, informative, and 
active functions of information systems. Determining the relationship 
types that are relevant to an information system is one of the most impor-
tant tasks in conceptual modeling. In this chapter, we study the nature and 
general characteristics of a relationship type. 

In the first section, we define relationship types similarly to the way in 
which entity types were defined in the preceding chapter. In Sect. 3.2, we 
explain how to represent relationships and their types in an information 
system, in both logic and UML. Attributes are a particular but important 
kind of relationship type, which is addressed in Sect. 3.3.  

3.1 Definition 

Relationship types can be defined in several ways. Here, we adopt a defini-
tion similar to that of entity types. The rationale is that there is a similarity 
between the operation of classifying an object into an entity type and that 
of classifying a relationship into a relationship type. For example, there is 
little difference between classifying the reader of this book as a Person and 
that of classifying what he does with the book as Reads. In both cases we 
abstract something: in Person, we ignore the differences that exist between 
people; in Reads, we ignore how, where, and why the book is being read, 
the reader’s interest in the book, the level of difficulty, and so on. Thus, it 
would be reasonably accurate to use a definition of a relationship type that 
is almost identical to that of an entity type: “A relationship type is a con-
cept whose instances at a given time are identifiable individual relation-
ships that are considered to exist in the domain at that time.”  

However, the above definition is unsatisfactory because it ignores the 
fact that a relationship is always a relationship between objects. Although 
we can imagine isolated objects in a domain, it is impossible to imagine a 
relationship without the presence of objects. The participants in a relation-
ship are the objects that participate in it. Each participant plays a role in 
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the relationship. In the above example, the participants are The reader of 
this book and This book. The former plays the role of reader, and the latter 
the role of reading. 

If we move on from instances to types, we can say that a relationship 
type consists of a set of n participants, with n ≥ 2. A participant is an entity 
type that plays a role in a relationship type. We write R(p1:E1, …, pn:En) to 
denote a relationship type named R, with participant entity types E1, …, En 
playing roles p1, …, pn, respectively. Sometimes we omit the role pi played 
by participant pi:Ei, either because it is obvious or because it is the same as 
the name of Ei. In these cases, it is assumed that pi is the same as Ei. For 
example, Reads (reader:Person, Book) is equivalent to Reads 
(reader:Person, book:Book).  

We say that R(p1:E1, …, pn:En) is the schema of the relationship type R 
and that p1:E1, …, pn:En are its participants. Conceptually, the order of the 
participants in the schema is not significant. Two different participants can 
be of the same entity type, but there cannot be two participants with the 
same role. For this reason, we sometimes say simply that p1, …, pn are the 
participants of the relationship type. 

Using the above notation and terminology, the following could be an 
acceptable definition: “A relationship type R(p1:E1, …, pn:En) is a concept 
whose instances at a given time are distinct sets {<p1:e1>, …, <pn:en>} 
formed by n entities e1, …, en that are instances of their corresponding type 
E1, …, En, and are considered to have a relationship R in the domain at that 
time, playing the respective roles p1, …, pn.” The instances of a relation-
ship type are called relationships. 

This definition states, in the first place, that relationship types are con-
cepts. Therefore, the concept theories developed in cognitive science are, 
in theory, also applicable to relationship types.  

Secondly, the definition states that a relationship is a set {<p1:e1>, …, 
<pn:en>} formed by exactly one pair <pi:ei> for each of its n participants. 
For example, the instances of Supplies (Supplier, Part, user:Project) must 
include an entity from each of the three entity types. If there were an in-
stance of Supplies without, say, a user role then the relationship type 
would be incorrect. The definition requires each instance of Supplies to in-
clude a user role. Another incorrect case would occur if we were to accept 
that an instance of Supplies could consist of a supplier S, a part P, and user 
projects A, B, and C. The definition requires each instance of Supplies to 
include exactly one user; thus, we should consider that in this case there 
are three relationships, not one. 

The fact that a relationship must include one entity for each participant 
should not be confused with the fact that two or more participants may be 
of the same entity type. A relationship type such as IsParentOf (par-



3.1 Definition      61 

ent:Person, child:Person) is totally valid. An instance of this relationship 
type will include two persons, one for each participant (parent and child). 
A relationship type in which the same entity type plays two or more roles 
is called recursive. 

Although it is rare, a relationship could include the same entity twice, as 
distinct participants. For example, the recursive type Knows (Person, ac-
quaintance:Person) could have instances in which the two people are the 
same (if it were the case that a person knew himself). 

Thirdly, the definition states that the instances of a relationship type 
must be distinct sets. It is not possible to have two relationships in the do-
main that are formed by exactly the same participants. In the Supplies ex-
ample, there cannot be two relationships with the same supplier, part, and 
project.  

Finally, the definition states that the instances of a relationship type R 
are sets of entities that are considered to have the relationship R in the do-
main at that time, playing their respective roles. It is important to note that 
the definition says that they “are considered to have the relationship R”. 
As with entity types, this aspect does not cause difficulties in most rela-
tionship types, but there are cases that raise doubts because what some 
people may consider to exist at a given point in time, other people may 
consider not to exist (at least at that point in time). When this happens, an 
effort must be made to refine the definition and reach an agreement be-
tween the people involved.  

An example of a relationship type that should not cause any problem in 
this respect is Lives (resident:Person, placeOfResidence:Town). If a person 
p and a town to are the participants in an instance of this type at some time, 
it is because p lives in to at that time.  

An example that may raise some doubts is IsMotherOf (mother:Woman, 
child:Person). An instance of this type at time t involves a woman m and a 
person p if it is considered at t that m is the mother of p. Let us consider 
two people: Alice and Alan (see Fig. 3.1). Alice is born and dies at T1 and 
T3 respectively. At T2, Alice gives birth to Alan, who dies at T4. Figure 3.1 
shows three possible interpretations of the relationship IsMotherOf (Alice, 
Alan): 

(a) The relationship holds only while the child, Alan, is alive.  
(b) The relationship holds only while both the mother and the child are 

alive. 
(c) Once Alice has given birth to Alan, the relationship holds forever. 

Which of these interpretations is best must be defined in the domain. 
The one that is chosen will have an impact on the answer to the question 
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“who is p’s mother now?” In Fig. 3.1, the answer to this question at T3 < t 
< T4 and at T4 > t will depend on the interpretation chosen. 

Note that the definition given above does not require that the entities 
participating in a relationship at time t must be an instance of their types at 
t. Although they usually will be, they might have been an instance at some 
previous time without being so at t. We can see the difference in the two 
previous examples. In Lives (resident:Person, placeOfResidence:Town), if 
person p lives in town to at time t, it is likely that p is required to be an in-
stance of Person at t, and to to be an instance of Town at t. However, in 
IsMotherOf (mother:Woman, child:Person), it may be acceptable for 
woman m to be considered the mother of person p at time t even if m is not 
considered an instance of Woman at t. In interpretation (a) in Fig. 3.1, in 
the interval from T3 to T4 Alice is considered to be Alan’s mother even if 
Alice is no longer an instance of Woman. In interpretation (c), after T4 Al-
ice is also considered to be Alan’s mother, even if neither Alice nor Alan is 
an instance of its type at that time. 

We say that R(p1:E1, …, pn:En) is synchronous if, for each of its in-
stances r = {<p1:e1>, …, <pn:en>} at time t, the entities e1, …, en partici-
pating in r are instances of their respective types at t; otherwise, R is asyn-
chronous. In the examples above, Lives is synchronous, while IsMotherOf 
is asynchronous according to interpretations (a) and (c) in Fig. 3.1. Almost 
all relationship types are synchronous. Asynchronous relationship types 
can be defined only in temporal conceptual models. In this book, unless 
stated otherwise, we assume that relationship types are synchronous.  
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Fig. 3.1. Three interpretations, (a), (b) and (c), of the temporal existence of the 
relationship IsMotherOf (Alice, Alan) in a domain
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3.1.1 Degree 

The degree of a relationship type is the number of participants in that type. 
Most relationship types have degree 2, and are called binary. Relationship 
types with a degree greater than 2 are called n-ary. The most common of 
the n-ary relationship types are those that have degree 3, which are referred 
to as ternary.  

3.1.2 Pattern Sentence 

Linguistically, a relationship is a fact that holds in a domain and can be 
expressed using a grammatical sentence. For example, an instance of 
Reads (reader:Person, reading:Book) with participants Arnold and Alice in 
Wonderland may be expressed using the sentence “Arnold reads Alice in 
Wonderland”, while another with participants Laura and Tirant Lo Blanc 
could be expressed as “Laura reads Tirant Lo Blanc”, etc.  

The pattern sentence of a relationship type is a declarative sentence in 
which there is a placeholder for each participant. The sentence that linguis-
tically expresses a relationship is obtained by filling in the placeholders 
with the names of the participants. In the above example, the pattern sen-
tence could be 

<Person> reads <Book> 

where <Person> and <Book> are slots that must be filled in with (the 
names of) a specific person and book respectively. If we wish to express 
that the first participant is a person and the second a book, we may use a 
longer pattern sentence: 

Person <Person> reads the book <Book> 

which is instantiated as 

The person Arnold reads the book Alice in Wonderland 
The person Laura reads the book Tirant Lo Blanc 

Pattern sentences help us to understand the meaning of relationship 
types and may be implicit or explicit. The former are built as explained be-
low, and the latter are given by the designers. Every relationship type has 
one or more implicit pattern sentences. Explicit pattern sentences are op-
tional. 

Implicit pattern sentences are derived from the schema R(p1:E1, …, 
pn:En). If we choose the names of the relationship types (R) and roles (p1) 



64      3 Relationship Types 

sensibly, the sentences derived may be enough, and we shall not need ex-
plicit pattern sentences. 

The derivation of implicit pattern sentences depends on how roles are 
named. There are two approaches: noun-based and verb-based. In the 
noun-based approach, role names are nouns, while in the verb-based ap-
proach, role names are verbs. An example of the former is R 
(reader:Person, reading:Book), where the roles (reader and reading) are 
nouns. The same example in the latter approach could be R (reads:Person, 
is read by:Book), where the roles (reads, is read by) are verbs. 

Firstly, we shall describe the derivation of implicit pattern sentences for 
binary types when the role names are nouns. In this case, there are three 
implicit pattern sentences. Before giving their general structure, we show 
the sentences for the example Reads (reader:Person, reading:Book): 

 The person <Person> reads the book <Book> 
 The person <Person> is (a | the) reader of the book <Book> 
 The book <Book> is (a | the) reading of the person <Person> 

In the option (a | the) in the second sentence, we use a if a book may be 
read by several persons, and the if it can be read by one person at most.1 In 
the third sentence, we use a if a person can read several books at the same 
time, and the if he or she can read one at most. The instantiation of these 
pattern sentences for a particular relationship could be as follows (assum-
ing that a person reads several books and that the same book may be read 
by several persons): 

The person Laura reads the book Tirant Lo Blanc 
The person Laura is a reader of the book Tirant Lo Blanc 
The book Tirant Lo Blanc is a reading of the person Laura 

Note that the first sentence is well formed when the name of the rela-
tionship type (Reads) is the verb of the sentence in third-person singular 
and the two participants in R appear in an appropriate order. The other two 
sentences are well formed when the role names are singular nouns.  

The general structure of the three pattern sentences corresponding to a 
binary relationship type R(p1:E1,p2:E2) is as follows: 

The e1 < E1> R the e2 < E2> 
 The e1 < E1> is (a | the) p1 of the e2 < E2> 
 The e2 < E2> is (a | the) p2 of the e1 < E1> 

                                                      
1 The information about how many people can read a book (or how many books 

can be read by a person) at the same time can be extracted from the cardinality 
constraints, which are considered in the next chapter. 
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We shall now go on to explain the derivation of implicit pattern sen-
tences for binary types when the role names are verbs. In this case, the 
name of the relationship type is not used, and there are two implicit pattern 
sentences. Before giving their general structure, we show the sentences for 
the example R (reads:Person, is read by:Book): 

 The person <Person> reads the book <Book> 
 The book <Book> is read by the person <Person> 

The instantiation of these pattern sentences for a particular relationship 
could be as follows: 

 The person Arnold reads the book Alice in Wonderland 
 The book Alice in Wonderland is read by the person Arnold 

Note that the sentences are well formed when the role names are verbs 
in third-person singular.  

The general structure of the two pattern sentences corresponding to a 
binary relationship type R(p1:E1,p2:E2) is as follows: 

 The e1 < E1> p1 the e2 < E2> 
 The e2 < E2> p2 the e1 < E1> 

For most binary types, at least one of the implicit pattern sentences cap-
tures the meaning of the corresponding relationship. When this happens, 
there is no need to define explicit pattern sentences.  

In some cases, however, it may be difficult to find adequate names, 
making it necessary to define explicit pattern sentences. For example, con-
sider the following popular relationship type found in online bookstores: 
“Customers who bought this book also bought this other book”. It is diffi-
cult to choose names for the type and its two roles so that the implicit pat-
tern sentences express the meaning of the relationships. A schema such as 

 CustomersAlsoBought (origin:Book, additional:Book) 

does not produce expressive sentences. Therefore, in this case it would be 
appropriate to define an explicit pattern sentence, such as 

 Customers who bought book <Book> also bought book <Book> 

An instance might be 

Customers who bought the book Introduction to Conceptual Mod-
eling also bought the book Advanced Conceptual Modeling 

For n-ary types, it is difficult to find names of relationship types and 
roles from which we can derive expressive pattern sentences. Normally, 
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we need to define explicit pattern sentences for these types. For example, a 
pattern sentence for Supplies (Supplier, Part, user:Project) could be 

Supplier <Supplier> supplies part <Part> to be used in project 
<Project> 

3.1.3 Unary Relationship Types 

Normally, relationships are conceived of as having at least two partici-
pants. In fact, almost all conceptual modeling languages require that rela-
tionship types have a degree of at least two. 

However, when we develop a conceptual schema for a domain, we find 
concepts that seem to be naturally modeled as unary relationship types. For 
example, we could have IsThick (Book) to represent the fact that a book is 
thick. Another example could be IsManager (Person).  

In languages that do not allow unary relationship types, the above con-
cepts can be modeled as new entity types. For example, we could define 
the type ThickBook, or the type Manager. This is a valid and elegant solu-
tion, but it adds new entity types to the schema.  

Another solution involves modeling a unary type as binary, with an ad-
ditional participant that may take two values: true and false. For example, 
if Boolean is a data type we could define ThickBook (Book, Boolean) and 
Manager (Person, Boolean). This is also a valid solution, and a practical 
one in some languages, but few people will find it elegant. 

There is a third solution, which can be applied when we have two or 
more unary types with the same participant entity type E. An example of 
this situation might be when we have IsManager (Person) and IsSalesman 
(Person). In this case, we could define a binary type P(E,E′), where E′ is 
an entity type with as many instances as the unary relationship types that 
we have. In this example, we could have P (Person, JobCategory), where 
JobCategory has the instances Manager and Salesman. In UML, JobCate-
gory could be defined as an enumeration. 

3.1.4 Population 

The population of a relationship type R at time t is the set of its instances 
that exist in the domain at t.  

In general, the population of a relationship type is time-varying during 
the lifetime of an information system. However, there are two particular 
cases that deserve special treatment: constant and permanent relationship 
types. Their definition bears some resemblance to that of entity types, but 
it is not the same. 
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A relationship type R(p1:E1, …, pn:En) is constant with respect to a par-
ticipant pi if the instances of R in which an instance ei of Ei participates are 
the same during the temporal interval in which ei exists. We shall illustrate 
this definition with two examples. The first is  

WasBorn (native:Person, birthplace:Town) 

We assume that Town is constant and that Person is not permanent, mean-
ing that persons are born and die. WasBorn is constant with respect to na-
tive because the set of instances r = {<native:p>, <birthplace:to>} in 
which a person p participates is constant during p’s life. Note that Was-
Born is not constant with respect to birthplace, because the set of people 
born in a town may change over time. 

The second example is: 

Equivalence (source:Unit, conversionRate:Decimal, target:Unit)  

with the explicit pattern sentence 

A <Unit> is equivalent to <Decimal> <Unit>  

which produces sentences such as 

An inch is equivalent to 2.54 centimeters 

Equivalence is constant with respect to its three participants. The set of in-
stances of Equivalence corresponding to a pair of units and a decimal is the 
same at any time.  

A relationship type is constant if it is constant with respect to all its par-
ticipants. Equivalence is constant, but WasBorn is not. 

A relationship type R(p1:E1, …, pn:En) is permanent with respect to a 
participant pi if the instances of R in which an instance ei of Ei participates 
never cease to exist during the temporal interval in which ei exists. In the 
example above, if Person were permanent, WasBorn would be permanent 
with respect to birthplace, because the set of people born in a town would 
never decrease. As another example, consider 

HasVisited (visitor:Person,Town) 

If we assume that Town is constant and that Person is permanent then 
HasVisited is permanent with respect to visitor and town because once a 
person has visited a town, he has visited it forever. 

A relationship type is permanent if it is permanent with respect to all its 
participants. HasVisited is permanent, but WasBorn is not. 
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3.1.5 Subsumption 

In general, the population of a relationship type is independent of that of 
the other types defined in a schema. However, in some cases the popula-
tion of a relationship type must necessarily be included in that of another 
type. Using a definition similar to that of entity types, we say that R2 sub-
sumes R1 or that R1 is a subtype of R2 if all instances of R1 must also be in-
stances of R2. A formal definition is provided in the next section. For ex-
ample, consider the following relationship types:  

Works (employee:Person, employer:Company) 
 Manages (manager:Person, Company) 

If we assume that the managers of a company are employees of that com-
pany, then Manages is a subtype of Works. We shall study the subsump-
tion of relationship types in Chap. 10. 

3.2 Representation in an Information System 

As we already know, in order to be able to perform their functions, infor-
mation systems must have a representation of their domain. In terms of the 
elements considered in this chapter, this means that an information system 
must have a representation of: 

• the relationship types; 
• the relationships in the domain; 
• the classification of the relationships into relationship types. 

The relationship types are represented in the conceptual schema. The 
schema contains a symbol (which is generally chosen arbitrarily) for each 
relevant relationship type. The concrete form of the symbol is irrelevant at 
the conceptual level. We need only to assume that the symbols exist and 
that there is a biunique correspondence between the relationship types rep-
resented in the information system and the symbols representing them in 
the conceptual schema. In this book, we normally designate these symbols 
with words beginning with a capital letter. When confusion is unlikely, 
however, we do not distinguish between relationship types and their sym-
bols.  

The relationships that exist in the domain and the classification of rela-
tionships according to their types are represented in the information base.  

Below, we sketch the representation in first-order logic and describe the 
use of UML in more detail. 
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3.2.1 State of the Information Base 

In the previous chapter, we defined the state of an information base at a 
given time as the set of facts it contained at that time. In that chapter, the 
facts were entity facts. We have now seen that there are also relationship 
facts. Therefore, the state of an information base consists of the entity and 
relationship facts represented in the information system. There are no other 
fact types. 

3.2.2 Logical Representation  

In logic, we represent a relationship type R(p1:E1, …, pn:En), with degree n, 
using a predicate R with the same degree, where the n arguments are sym-
bols denoting objects or values. The order of the arguments is conven-
tional. We assume the order used in the schema. If the name R is unique, 
then the name of the predicate is also R. Otherwise, given that there cannot 
be two predicates with the same name, we use some variation of the name 
R. We write the predicate’s name starting with a capital letter and without 
blanks. Note that in this representation, the role names disappear.  

A relationship r = {<p1:A1>, …, <pn:An>} that is an instance of R(p1:E1, 
…, pn:En) is represented using a formula R(A1, …, An), where R is the 
predicate corresponding to the relationship type and A1, …, An are the 
symbols that denote the entities or the values of the participants. The for-
mula R(A1, …, An) indicates simultaneously that A1, …, An are related in 
the domain and that the relationship they have is of type R. Note that, in 
logic, there cannot be duplicate formulas and therefore there cannot be du-
plicate relationships. In logic, the formulas consisting of a simple predicate 
with constant arguments are called facts. For this reason, formulas R(A1, 
…, An) are called relationship facts, or simply facts. 

For each synchronous relationship type R(p1:E1, …, pn:En), the schema 
must include n referential integrity constraints 

R(e1, …, en) → E1(e1) 
… 
R(e1, …, en) → En(en)  

These constraints guarantee that each participant entity is an instance of its 
corresponding type. The referential constraint is the most important kind of 
constraint in conceptual modeling. 

In logic, we represent that R1(p1,1:E1, …, p1,n:En) is a subtype of 
R2(p2,1:E1, …, p2,n:En) using the formula 

R1(e1, …, en) → R2(e1, …, en)  
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For example, to state that 

 Manages (manager:Person, Company) 

is a subtype of 

Works (employee:Person, employer:Company) 

we write 

Manages(p,c) → Works(p,c). 

3.2.3 Representation in UML 

In UML, binary relationship types can be represented in two ways: either 
as associations or as attributes. We consider associations here and attrib-
utes in the next section. 

Binary associations are represented graphically by means of a line con-
necting the two entity types. The name of the association is shown near the 
line. The names of the roles are placed near their corresponding entity 
types. Although it is not explicitly prescribed in the official documenta-
tion, most users of UML define role names using nouns. Figure 3.2 shows 
the graphic representation of the associations corresponding to the follow-
ing types:  

Lives (resident:Person, placeOfResidence:Town) 
 WasBorn (native:Person, birthplace:Town) 
 Works (Person, Town) 

In the case of the first example, we show the names of the relationship 
types and those of the two roles. The solid arrowhead next to the name of 
the association that points toward a participant indicates the order of the 

Fig. 3.2. Graphical representation of three relationship types as UML associations
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participants used in the derivation of implicit pattern sentences. When the 
order is left to right or top to bottom, we usually omit the arrowhead. In 
this example, the implicit pattern sentences are: 

 Person <Person> lives in town < Town> 
 Person <Person> is a resident of town <Town> 
 Town <Town> is the place of residence of person <Person> 

These sentences are reasonably expressive. 
In the case of the second example, we omit the name of the relationship 

type. There will only be two implicit pattern sentences, which are expres-
sive enough: 

Person <Person> is a native of town <Town> 
 Town <Town> is the birthplace of person <Person> 

In the case of the third example, the names of the roles are the same as 
those of the entity types. The single implicit pattern sentence is also ex-
pressive: 

 Person <Person> works in town <Town> 

Given that the order of the participants is from left to right, an arrowhead 
is not needed in this case.  

In UML, the name of an association is optional. When there is no name 
and we need to refer to an association, we use the names of the roles. An 
example is shown in the case of the association native-birthplace in Fig. 
3.2. 

Two or more associations may have the same name, but, conceptually, 
each association shown in a diagram is unique. The role names are op-
tional; when they are missing, they are assumed to be the name of the en-
tity type starting with a lowercase character. 

In UML, it must be possible to unambiguously navigate from one entity 
type to the others with which it is connected using only the role names. In 
Fig. 3.2, we can navigate from Person to Town using the role names pla-
ceOfResidence, birthplace, and town. An ambiguity arises if we add a new 
association between Person and Town, such that the name of the role 
played by Town is one of the other three. For example, the following 
would not be admissible:  

HasVisited (Person, Town) 

It must be defined with different role names, such as 

 HasVisited (visitor:Person, visitedTown:Town) 
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Similarly, we can navigate from Town to Person using the role names 
resident, native, and person. As before, an ambiguity arises if we define a 
new association between Person and Town, with Person playing a role 
named placeOfResidence, birthplace, or person. Sometimes it is difficult 
to find good role names. 

UML represents n-ary relationship types as associations. An association 
is drawn as a diamond, with a solid line for each participant connecting the 
diamond to the corresponding entity type. The name of the association is 
placed inside or near the diamond. The names of the roles are placed near 
their corresponding entity types. An example is shown in Fig. 3.3. 

In UML, it is not necessary to explicitly define the referential integrity 
constraints. The symbol used to represent an association (either a line or a 
diamond and lines) connects the participating entity types, and from here 
those constraints are defined implicitly. 

In UML, it is not possible to formalize whether a relationship type is 
constant or permanent.2 However, as we did for entity types, we can as-
sume that there are two constraint stereotypes (named constant and per-
manent), whose formalization is implicit. On the basis of this assumption, 
we have only to attach the constraint stereotype to the corresponding par-
ticipant or association. In Fig. 3.2, we have defined that the association na-
tive-birthplace is constant with respect to native and permanent with re-
spect to birthplace.  

As with entity types, in UML we represent association R1 as a subtype 
of R2 using a solid-line path from R1 to R2 and a large hollow triangle at the 
end of the path where it meets R2.  

Normally, concrete relationships are not shown in diagrams. However, 
if needed, UML provides a notation that can be used for showing relation-
                                                      
2 UML 2.1 has a concept of changeability of association participants and attrib-

utes, but it is not expressive enough to capture the semantics of constant and 
permanent constraints. 
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ships in object diagrams. A concrete relationship is shown using the same 
notation as for an association, but the solid path or paths connect entities 
rather than entity types. In UML, instances of associations are called links. 
The graphic representation of relationships is useful to illustrate a fragment 
of complex schemas. Figure 3.4 shows two links of the associations de-
fined in Fig. 3.2.  

The UML graphical representation of relationships may not be practical 
when we want to show many links, because the figures become large. In 
these cases, a tabular representation may be a better choice. 

3.2.3.1 Ordered Participants 

Consider the relationship type  

WaitingList (Flight, passenger:Person)  

shown in Fig. 3.5, with the pattern sentence 

 The person <Person> is in the waiting list of flight <Flight> 

If a given flight has several people in its waiting list, there will be an in-
stance of WaitingList for each passenger in the list, but these instances are 
unordered. We cannot assume that there is a first instance corresponding to 
the first passenger in the list, a second one corresponding to the second, 
and so on. 

Fig. 3.4. Graphic representation of two links
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If we are interested in representing the order of people in the list, we can 
add a third participant to the relationship type, 

 WaitingList (Flight, passenger:Person, order:Ordinal) 

which now has a pattern sentence such as 

 The person <Person> is the <Order> in the waiting list of flight 
 <Flight> 

This is an acceptable solution, but it is difficult to maintain in an informa-
tion base. One of the main problems is that when a passenger leaves a 
waiting list, the order of the people that follow him changes. Another prob-
lem is that we need to define an integrity constraint requiring that, in a list, 
the orders must be consecutive. 

UML provides a construct that is useful in cases such as this one: or-
dered participants. In the above example, we would define a binary asso-
ciation and indicate that the passenger participant is ordered, using the 
keyword ordered in braces. The meaning is that the passengers in the wait-
ing list of a flight are ordered. The passengers of a flight can be obtained in 
the order in which they are in the list. A passenger can be added in any po-
sition of the list. When a passenger leaves a list, the order of the people 
that follow him in the list is updated automatically. Using this construct, 
the above constraint is not needed.  

3.2.4 Properties of the Representation 

In the previous chapter, we saw that, independently of the language used, 
the representation of entities and their types in an information system must 
satisfy a few properties, mainly completeness, correctness, nonempty 
population, and nonredundancy. The same applies to the representation of 
relationships and their types. In the following, we briefly describe each of 
these properties. 

3.2.4.1 Completeness 

This property states that if a relationship r in the domain is considered to 
be an instance of R at a given time, and we want to represent this fact in an 
information system, then the information base must contain a representa-
tion of r and a representation of the classification of r into R at that time.  



3.3 Attributes      75 

3.2.4.2 Correctness 

This property states that if at some instant the information base contains a 
classification of a relationship r into relationship type R, then in the do-
main it must be considered that r is an instance of R at that instant, and this 
should be represented in the information system.  

3.2.4.3 Nonempty Population 

It must be possible for any relationship type defined in the schema to have 
a nonempty population. Otherwise, that type would not have any instance 
during the system’s lifetime. An example of a relationship type that would 
always have an empty population is Writes (author:Person, Machine). As-
suming that nobody writes a machine, Writes would always have an empty 
population. No valid instance of Writes may exist in the domain such that 
its second participant is a machine. 

A relationship type is satisfiable if it may have a nonempty population 
at a certain time. Similarly, a relationship type is unsatisfiable if it must 
always have an empty population.  

3.2.4.4 Nonredundancy 

Two relationship types are redundant if they must always have the same 
population. A schema should not include redundant relationship types. For 
example, a schema could include the following types: 

 Manages (boss:Employee, subordinate:Employee) 
 Supervises (supervisor:Employee, Employee) 

If, using the logical representation, the following property must hold in the 
information base, 

Manages(b,s) ↔ Supervises(b,s) 

then Manages and Supervises are redundant. One of them must be re-
moved from the schema. Redundancy must not be confused with the fact 
that a given relationship type may have several alternative names (syno-
nyms). 

3.3 Attributes 

Besides relationship types, most conceptual models contain the concept of 
an attribute of an entity type. Attributes are not strictly needed at a concep-



76      3 Relationship Types 

tual level,3 and they are very similar to binary relationship types. Thus it is 
not clear whether attributes should be used or when. 

In a binary relationship type there are two participants, each of which is 
an entity type playing a role in that type. The two participants must be con-
sidered as “colleagues” in the relationship type, because they perform the 
same function, and neither of them is subordinated to the other. This can 
be illustrated by a type such as Reads (reader:Person, reading:Book): a 
person cannot read without a text, nor can a book be read without a reader. 
The order of the participants in the schema does not imply a relationship of 
priority or subordination between them. 

However, there are some relationship types in which users and designers 
may consider a participant as a “characteristic” of the other. For example, 
in the case of HasBalance (Account, balance:Money) someone might ar-
gue that the participant balance is a characteristic of account and is thus 
subordinate to Account. The concept of an attribute allows this (subjective) 
subordination of one participant to another to be defined. 

An attribute is a binary relationship type R(p1:E1,p2:E2) in which partici-
pant p2 is considered to be a characteristic of E1, or p1 a characteristic of E2. 
Therefore, an attribute is like a binary relationship, except that users and 
designers add the interpretation that one participant is a characteristic of 
the other. Sometimes we say that E1 has attribute (p2:E2), that E2 is the 
value of the attribute p2 of E1, or that (p2:E2) is an attribute of E1. 

We denote the schema of an attribute using P(E1,E2), which must be un-
derstood as equivalent to a relationship type R(E1,p:E2). In the above ex-
ample, attribute Balance (Account, Money) is equivalent to the relationship 
type HasBalance (Account, balance:Money).  

Data types may have attributes too. An attribute of a data type is consid-
ered to be an immutable characteristic of its instances (values). 

3.3.1 Conceptual Models Based on Attributes 

Some conceptual models use attributes instead of relationship types. The 
rationale, as we shall see in Chap. 6, is that all relationship types can be 
transformed into binary ones and that attributes are binary relationship 
types.  

For any relationship type R(p1:E1,p2:E2) we can define one or two attrib-
utes, P2(E1,E2) and/or P1(E2,E1). If we define two, then we must indicate 
that they correspond to the same relationship type; this can be done by de-

                                                      
3 There are conceptual modeling languages that do not use attributes. The most 

prominent one is ORM (Halpin 2001). 
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claring that one is the inverse of the other. For example, A1 = Reader 
(Book, Person) and A2 = Reading (Person, Book) would be the two attrib-
utes that correspond to Reads (reader:Person, reading:Book). To this we 
should add that A1 is the inverse attribute of A2, and vice versa. 

3.3.2 Attribute Pattern Sentence 

Linguistically, instances of attributes can also be expressed by grammati-
cal sentences. The pattern sentence of an attribute gives the general struc-
ture of those sentences. For example, a pattern sentence of Balance (Ac-
count, Money) could be 

 The balance of account <Account> is the money <Money> 

This produces sentences such as 

 The balance of account 12345 is the money 30_euros. 

As we did for relationship types, we can also distinguish here between 
implicit and explicit pattern sentences. For attributes, there is only one im-
plicit pattern sentence. If we choose the name of the attribute (P) sensibly, 
the implicit pattern sentence may be enough in most cases. The general 
structure of the implicit pattern sentence of attribute P(E1,E2) is 

 (A | The) P of e1 < E1> is e2 < E2> 

In this sentence, we use the indefinite article if an instance of E1 could 
have several attribute values and the definite article otherwise. 

Alternatively, the following structure might be preferable: 

 e2 < E2> is (a | the) P of e1 < E1> 

which, applied to the previous example, gives  

The money <Money> is the balance of account <Account> 

3.3.3 Representation in UML 

UML shows attributes in the middle compartment of the corresponding en-
tity type. Thus, the attribute P(E1,E2) is represented by including the ex-
pression p:E2 in the middle compartment of E1. Figure 3.6 shows an entity 
type Customer with three attributes. Textually, we sometimes use the nota-
tion E1::p to refer to attribute p of E1. 

In UML, attributes may be marked as read-only, using the keyword {re-
adOnly} in braces. In our terminology, this keyword corresponds ap-
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proximately to attributes constant with respect to E1. In Fig. 3.6, we indi-
cate that the lengths of rivers are constant. We define that an attribute is 
permanent with respect to E1 by attaching a constraint stereotyped perma-
nent to it. Attributes of data types are always constant, and we may assume 
that there is a constraint stereotyped constant attached to them. 

The attributes of a given entity type must have different names. For 
navigation purposes, the name of an attribute of entity type E should not be 
the same as the role name of any of the participants of the associations in 
which E participates. 

When we want to depict a particular entity in an object diagram we can 
also show the value of its attributes, as illustrated in Fig. 3.7. The text at-
tribute name = value defines the concrete attribute values of the entity.   

3.3.4 On the Use of Attributes 

As we have seen, in the case of UML, when a conceptual model uses both 
relationship types and attributes their graphical representation is different. 
The graphical representations of relationship types show the entity types 
that participate in them. The whole schema shows clearly all the relation-
ship types in which an entity type participates. This representation helps 
users and designers to understand the schema, especially when it is large. 

The graphical representation of attributes, on the other hand, shows 
them in the context of the entity type of which they are a characteristic. 

Fig. 3.7. Representation of concrete entities and attribute values in UML
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This representation also helps one to understand the meaning of an entity 
type. 

A problem arises when an entity type E is the value of the attribute of 
another type E′, because the diagram does not show a line connecting E 
and E′. The relationship between E and E′ is not shown in the same way as 
the others. Figure 3.8 shows three examples. String is the value of the at-
tribute name of Employee, Department, and Project. The diagram does not 
have three lines connecting Employee, Department and Project with 
String. In fact, String does not appear in the diagram. Money is the value of 
the attribute salary of Employee, but the diagram does not show this with a 
line connecting Employee and Money. There is a line connecting Depart-
ment and Project to show the association Performs, but there is no line be-
tween Employee and Department to show the attribute assignment. The 
visual treatment of String, Money, and Department is different from that of 
Employee and Project.  

This problem can be solved by distinguishing between two kinds of en-
tity type: those that are specific to the domain being modeled and those 
that are independent of it. The former are entity types that must be defined 
completely in our schema: users and designers must reach agreement on 
their meaning. The latter are defined instead in other schemas, and they are 
only used (or reused) in our schema. In general, data types are domain-
independent. In the example in Fig. 3.8, we assume that String and Money 
are domain-independent, while Department is considered particular to the 
domain being modeled.  

On the basis of this distinction, a guideline for the use of attributes 
could be that the values of attributes should be entity types defined outside 
our schema. If we apply this guideline to Fig. 3.8, name can be an attribute 

Fig. 3.8. An example of attribute misuse. The attribute assignment is best 
modeled by an association
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in the three entity types and salary can be an attribute of Employee. How-
ever, assignment must be defined as an association between Employee and 
Department. 

A variant of this guideline is to use attributes for data types and associa-
tions for ordinary entity types. 

This is not a strict guideline, but it does help to make schemas easier to 
understand. We can define attributes whose values are entity types defined 
elsewhere, because their meaning must be sought outside our schema. In 
the above example, it does not seem sensible to assume that our schema 
must include a definition of what is meant by String and Money. On the 
other hand, we should not define attributes whose values are entity types 
particular to our domain (such as Department), because this makes it more 
difficult to see the relationships between these types and the others. 

3.4 Bibliographical Notes 

As we noted in the preceding chapter, only a few books describe relation-
ship types in detail without focusing on particular languages. Two notable 
exceptions are (Kent 1978) and (Tsichritzis and Lochovsky 1982). In con-
trast, many books addressing a particular language or method give interest-
ing explanations of particular topics, particularly (Nijssen and Halpin 
1989, Batini et al. 1992, Martin and Odell 1995, and Halpin 2001). The 
material presented in this chapter is a synthesis of those texts and other 
journal and conference papers. One of the most seminal of these was 
Chen’s paper (1976) on the entity–relationship language, which is the basis 
of this chapter. Wand et al. (1999) provided a thorough analysis of the re-
lationship type concept based on Bunge’s ontology. 

Chen (1983) gave one of the first analyses of the correspondence be-
tween relationship types and English sentences. Rolland and Proix (1992) 
discussed the correspondence in both senses: from natural language to re-
lationship types (and other schema constructs), and the generation of natu-
ral-language sentences from a schema. Hofstede et al. (1997) discussed the 
uses of verbalizations of fact types in conceptual modeling. 

A few languages require a pattern sentence of relationship types to be 
defined, including OSA (Embley et al. 1992), YSM (Yourdon 1993) and 
ORM (Halpin 2001). Unary relationship types are allowed in ORM (Hal-
pin 2001) (where they are called unary fact types) and HERM (Thalheim 
2000). 

The first two properties of the representation of classification 
(correctness and completeness) are normally implicit and very few works 
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mention them explicitly. Two exceptions are Greenspan et al. (1994), who 
called them property induction constraints, and Martin and Odell (1995). 

The nonempty population and nonredundancy properties are presented 
in Parsons and Wand (1997). The temporal properties of relationship types 
were presented by Costal et al. (1997). 

The guideline on the use of attributes mentioned in Sect. 3.2.4 is well 
known in conceptual modeling. It has become part of the UML Reference 
Manual (Rumbaugh et al. 2005, p. 189) 

3.5 Exercises 

3.1 Define at least ten relationship types found in the domain of a library 
that deal with books, authors, the order of the authors of a book, titles, 
publishers, number of pages, and so on. At least one of them must be n-
ary. Give the implicit (and if necessary the explicit) pattern sentences. 
Give the representation of the relationship types in logic and in UML. 
Also, give the representation in logic and in UML of the relationship 
“James Rumbaugh is the first author of the book The UML Reference 
Manual”. 

 
3.2 Define a schema with at least ten relationship types found in the do-
main of persons and their relatives. At least one of them must be n-ary. 
Give the implicit (and if necessary the explicit) pattern sentences. Give the 
representation of the relationship types in logic and in UML.  
 
3.3 Determine the schema of a relationship type whose instances can be 
expressed by sentences such as the following: 

• Sudha was a General chair of the 25th edition of the ER conference. 
• David was a Program chair of the 25th edition of the ER conference. 
• Oscar was the Program chair of the 17th edition of the CAiSE confer-

ence. 
• Colette was the General chair of the 13th edition of the RE conference. 

Show the UML representation of this relationship type and of the four in-
stances. Give an explicit pattern sentence. 
 
3.4 Determine the relationship types needed in a conceptual schema for a 
domain consisting of partially or completely filled-in Sudoku (also known 
as Number Place) puzzles. You will easily find the rules on the Internet. 
Each puzzle has a code that identifies it. Assume that the entity types 
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needed include Grid, Row, Column, Region, and Cell. Other types may 
also be necessary. Give the implicit (and if necessary the explicit) pattern 
sentences. Give the representation of the relationship types in UML.  

 
3.5 The periodic table is a tabular display of the known chemical elements. 
Consider the data depicted in the standard table (to be found in Wikipedia, 
for example). Determine entity and relationship types in a schema that are 
able to represent the data depicted in the standard table. Define the schema 
in UML. Give the explicit pattern sentences where necessary. Show 
graphically the instantiation of your schema for the element californium 
(Cf, atomic number 98). 

 
3.6 The population of a recursive binary relationship type R(p1:E,p2:E) can 
be constrained, like any other. Give an example of each of the following 
cases: 

1. R is permanent with respect to p1 and constant with respect to p2. 
2. R is permanent with respect to p1 and p2. 
3. R is constant with respect to p1 and p2. 

Indicate in each case whether the population of E is constant, permanent, 
or unconstrained. 

 



4 Cardinality Constraints 

Cardinality constraints are one of the most important kinds of constraint in 
conceptual modeling. In addition to constraining the population of rela-
tionship types, cardinality constraints help us to understand the meaning of 
the types involved, and they also play an important role in system design. 

In the first section, we study cardinality constraints for binary relation-
ship types, including attributes. We discuss the satisfiability of these con-
straints, and introduce a method for checking whether or not a schema with 
these constraints is satisfiable. In the second section, we study cardinality 
constraints for the n-ary case. Finally, in Sect. 4.3, we present an important 
guideline for the design of relationship types in conceptual schemas. 

4.1 Cardinality Constraints of Binary Relationship Types 

Let R(p1:E1,p2:E2) be a binary relationship type. The cardinality constraint 
(or cardinality, for short) between p1 and p2 in R, written Card(p1; p2; R), is 
a pair  

 Card(p1; p2; R) = (min,max)  

that indicates the minimum and maximum numbers of entities of type E2 
that may be related, in R, to any entity of type E1 at any time; Card(p2; p1; 
R) is similarly defined. The minimum cardinality, min, must be equal to or 
greater than zero, and the maximum, max, must be greater than zero and 
not less than min. 

For example, for the relationship type 

Reads (reader:Person, reading:Book) 

the cardinalities 

Card(reader; reading; Reads) = (0,3)  
Card(reading; reader; Reads) = (0,1) 

mean that a person may read between 0 and 3 books at any time, and that a 
book may be read by 0 or 1 person at any time. 
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Formally, Card(p1; p2; R) = (min,max) if1 

E1(e1) → min ≤ |{e2 | R(e1,e2)}| ≤ max 

In this formula, {e2 | R(e1,e2)} is the set of entities e2 that are related to the 
entity e1. The formula states that, for any e1, the cardinality of that set must 
be equal to or greater than min, and equal to or less than max. 

We simplify the notation  Card(p1; p2; R) = (min,max) as follows: 

• Cmin(p1; p2; R) denotes the minimum cardinality (min). 
• Cmax(p1; p2; R) denotes the maximum cardinality (max). 
• For Card, Cmin, and Cmax, we omit the third argument (R) when it is 

clear from the context that we are referring to R. 

From the definition, we can see that if Card(p1; p2) = (min,max), then 
Card(p1; p2) = (min′,max′) for any min′ ≤ min and max′ ≥ max. Usually we 
are interested only in the strongest min and max numbers, which are those 
such that if Card(p1; p2) = (min,max) is valid, then Card(p1; p2) = 
(min′,max′) is false for any pair or numbers min′ and max′ such that  min′ > 
min or max′ < max. 

When Cmin(p1; p2; R) > 0, we say that the participation of E1 in R with 
role p1 is total or mandatory, because all instances of E1 must participate in 
some relationship of R, at any time. When Cmin(p1; p2; R) = 0, we say that 
the participation is partial or optional, because an instance of E1 may not 
necessarily participate in R with role p1. 

When Cmax(p1; p2; R) = 1, we say that there is a functional correspon-
dence between p1 and p2 in R, or that there is a functional dependency be-
tween them, denoted by {p1} → {p2}. When Cmax(p1; p2; R) > 1, the cor-
respondence is nonfunctional.  

Some cardinality constraints are not actually constraints. These are 

Cmin(p1; p2; R) = 0 
Cmax(p1; p2; R) = ∞ 
Card(p1; p2; R) = (0,∞) 

We say that these cardinalities are unconstrained. All other cardinalities 
are constrained. 

Normally, cardinality constraints are shown graphically. The value of 
Card(p1; p2; R) = (min,max) is shown next to the graphical element corre-
sponding to R in the form min..max. Some languages show min..max near 
p1, while others show it near p2.  

                                                      
1 In order to simplify the notation, variables without quantifiers are assumed to be 

universally quantified in the front of the formula. 
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In UML, cardinality constraints are called multiplicities. The value of 
Card(p1; p2; R) = (min,max) is shown near p2. When min = max, we write 
just one number. If max is unconstrained (∞), this is denoted by an aster-
isk. When min = 0 and max = ∞, we write an asterisk only.  

Figure 4.1 shows several cardinality constraints. A person may have be-
tween 0 and an unconstrained number (*) of children, and a person may 
have between 0 and 2 parents (0..2). In addition, all of the people were 
born and live in a town and, optionally, work in a town. At least one per-
son lives in any given town, but it is possible that nobody works in it.  

In Fig. 4.1 note that: 

• There is a total participation of Person and Town in Lives.  
• There is a total participation of Person in WasBorn. 
• All the other participations are partial.  
• There is a functional correspondence between Person and Town in 

Lives, Works, and WasBorn.  
• All the other correspondences are nonfunctional. 

The above definition of Card states that the value of Card(p1; p2; R) is a 
single pair (min,max). The definition may be easily generalized to a set of 
natural numbers I. The formal definition is then 

E1(e1) → |{e2 | R(e1,e2)}| ∈ I 

For example, if we want to state that a person may read 0, 2, or 4 books 
at the same time, then Card(reader; reading; Reads) = {0,2,4}. In practice, 
the sets I are often intervals {min1, …, max1, …, minn, …, maxn}, which 
explains why these constraints are called interval cardinality constraints, or 
int-cardinality constraints. 

Fig. 4.1. Examples of cardinality constraints in UML
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4.1.1 Existence Dependency Relationship Types 

Let R(p1:E1,p2:E2) be a binary relationship type. We say that R is an exis-
tence dependency relationship type and that E1 is existence-dependent on 
E2 if the following conditions are satisfied: 

• Card(p1; p2; R) = (1,1) 
• R is constant with respect to p1. 

In the example of Fig. 4.1, WasBorn is an existence dependency relation-
ship type, and Person is existence-dependent on Town. Each instance of 
Person has one and only one placeOfBirth, which is always the same. 

Existence dependency relationship types are important because, as we 
shall see in Chap. 6, any relationship type can be transformed into a set of 
existence dependency relationship types. 

4.1.2 Attributes 

Cardinality constraints can also be defined for attributes. An attribute 
P(E1,E2), corresponding to a relationship type R(e1:E1,p:E2) is said to be 
single-valued if the correspondence between e1 and p is functional. Other-
wise, the attribute is said to be multivalued. Moreover, the attribute is total 
if the participation of E1 in P is total; otherwise, it is partial.  

For example, consider the attributes Name (Person, String) and Hobby 
(Person, String). If a person has one name and may have any number of 
hobbies, then Name is single-valued and total, while Hobby is multivalued 
and partial. 

In UML, the cardinality constraint of an attribute P(E1,E2) is shown near 
the attribute name (see Figure 4.1). When the constraint is not shown, it is 
assumed to be (1,1), that is, the default cardinality constraint for an attrib-
ute is total and single-valued (as in the case of name in Fig. 4.1).  

The cardinality constraint between e2 and e1 is not defined and is as-
sumed to be unconstrained, if not specified otherwise elsewhere in the 
schema. If this assumption does not hold, an alternative could be to define 
an association instead of an attribute. Figure 4.1 states that there may be 
several persons with the same name, the same hobby, or the same phone. 
If, for example, we want to specify that there may not be two persons with 
the same name, we will need to define an explicit integrity constraint, as 
we shall see in Chap. 9. In this latter case, an alternative could be to define 
a binary association HasName (Person, name:String) with Card(name; 
person) = (0,1), but this is rarely done. There is a trade-off between defin-
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ing an attribute and an explicit integrity constraint and defining a binary 
association and its two cardinalities. 

4.1.2 Recursive Relationship Types 

In general, the two cardinality constraints of a binary relationship types are 
independent of each other. However, it is interesting to observe that for re-
cursive relationship types, some combinations are inconsistent, because 
one of the two cardinalities is either not valid in the domain or not defined 
with the strongest numbers. 

Consider the example in Fig. 4.2. Each employee has exactly one man-
ager and may have at most one subordinate. If these two cardinalities are 
valid, then we must (why?) have Card(manager; subordinate) = (1,1), 
which is stronger than the (0,1) shown in the figure: each employee must 
have exactly one subordinate. Also, note that (1,∞) would not be the 
strongest numbers of Card(manager; subordinate). 

In what follows, we give a set of consistency rules that the two cardinal-
ities must satisfy.2 Let R(p1:E,p2:E) be a binary recursive relationship type, 
with Card(p1; p2) = (min1, max1) and Card(p2; p1) = (min2,max2). These 
cardinalities must satisfy the following consistency rules: 
 

1. If max1 = max2 = 1, then min1 = min2 = 0 or min1 = min2 = 1. This 
rule is violated in the example in Fig. 4.2. 

2. If max1 > 1 and max2 = 1, then min1 = 0. 
3. If max1 = 1 and max2 > 1, then min2 = 0. This is symmetrical to 

rule 2. 

                                                      
2 For proofs of these rules, see the references given at the end of the chapter. 
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4.1.3 Satisfiability of Cardinality Constraints 

In general, conceptual schemas include many integrity constraints. The le-
gal instances of an information base are those that satisfy all the con-
straints. A schema S is satisfiable if it admits at least one legal instance of 
an information base. For some constraints, it may happen that only empty 
or nonfinite information bases satisfy them. In conceptual modeling, the 
information bases of interest are finite and may be populated.  

We then say that a schema S is strongly satisfiable if it admits at least 
one nonempty and finite legal instance of the information base. Schemas 
that are not strongly satisfiable are considered to be incorrect. 

In this chapter, we examine whether or not a schema with a set of cardi-
nality constraints is strongly satisfiable. Fortunately, there is a method that 
provides an answer to this question. The method is able to deal with the 
two cardinality constraints that we can define for binary relationship types. 
As we shall see in the next section, for n-ary types we can define many 
more cardinality constraints, but the method is not yet able to cope with all 
of them. We shall describe the binary case only. We omit the proof of the 
correctness of the method, which can be found in the references given at 
the end of the chapter. 

Figure 4.3 shows an example that is not strongly satisfiable. The reader 
is invited to verify that no nonempty finite population of the four types 
(two entity types and two relationship types) satisfies the four cardinality 
constraints. The method described below enables us to detect the problem 
in a systematic way. 

 The method is based on building a directed graph G and checking that it 
does not contain cycles of a particular type. Figure 4.4 shows the graph 
corresponding to the example in Fig. 4.3. The graph G contains a vertex 
for each entity or relationship type in the schema. We have used diamonds 
to represent the relationship types. There are two arcs for each participant 

Fig. 4.3. Example of unsatisfiable cardinality constraints
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in a relationship type: one from the relationship type to the participant en-
tity type and the other in the opposite direction.  

Each arc has a weight, which is computed as follows. Let R(p1:E1,p2:E2) 
be a binary relationship type with cardinalities Card(p1; p2) = (min12,max12) 
and Card(p2; p1) = (min21,max21). The arc from R to E1 has a weight w12, 
where 

•  w12 = ∞ if min12 = 0; 
• w12 = 0 if min12 = ∞; 
• w12 = 1/min12 otherwise. 

The arc from E1 to R has a weight max12. 
In Fig. 4.3 we have Card(company; worker) = (2,∞). Therefore, the arc 

from Works to Company has a weight ½, and the arc from Company to 
Works has a weight ∞. The weights of the two arcs between R and E2 are 
computed in a similar manner. 

It is obvious that G contains cycles. A critical cycle of G is a nonempty 
sequence of arcs (v0,v1), (v1,v2), …, (vk-1,vk) such that 

• v0 = vk and 
• v1, …, vk are mutually distinct, and 
• the product of the weights of the arcs (v0,v1), …, (vk-1,vk) is less than 1. 

 
It can be proved that a schema is strongly satisfiable if the graph G does 

not contain a critical cycle. In Fig. 4.4 there are some critical cycles, such 
as 

(Works, Company), (Company, Owns), (Owns, Person),  
(Person, Works) 

Fig. 4.4. The graph G corresponding to the schema of Fig. 4.3
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Fig. 4.4. The graph G corresponding to the schema of Fig. 4.3
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for which the product of the weights is ½. Therefore, the schema in Fig. 
4.3 is not strongly satisfiable. 

The method described above can also be applied to recursive types. An 
example is shown in Fig. 4.5. The schema (a) includes the constraints that 
each person must have two parents and three children. The corresponding 
graph (b) has a critical cycle, which proves that the schema is not strongly 
satisfiable. 

4.2 Cardinality Constraints of n-ary Relationship Types 

We have seen that for a binary relationship type R(p1:E1,p2:E2) we have to 
define two cardinality constraints: Card(p1; p2) and Card(p2; p1). Let us 
now consider a ternary type, such as Uses (Programmer, Language, Pro-
ject), shown in Fig. 4.6, with the explicit pattern sentence: 

The programmer <Programmer> uses the language <Language>  
in project <Project> 

For ternary types, we can define up to 12 cardinality constraints. The con-
straints for the example are: 

1. Card(programmer; language), which gives the (minimum and maxi-
mum) number of languages that a programmer may use at a given 
time. A minimum of zero will indicate that there may be 
programmers who do not participate in any instance of Uses 
relationship. 

Fig. 4.5. A recursive relationship type with nonsatisfiable cardinality constraints
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2. Card(programmer; project), which gives the number of projects in 
which a programmer may participate at a given time. As above, a 
minimum cardinality of zero means that there may be programmers 
who do not participate in any instance of the Uses relationship. 

3. Card(language; programmer), which gives the number of program-
mers who may use a language. A minimum cardinality of zero means 
that some languages may not be used at some given time.  

4. Card(language; project), which gives the number of projects that 
may use a language. A minimum cardinality of zero means that some 
languages may not be used at some given time. 

5. Card(project; programmer), which indicates the number of 
programmers who may participate in a project. A minimum of zero 
means that not all projects participate in Uses.  

6. Card(project; language), which indicates the number of languages 
that may be used in a project. As above, a minimum of zero means 
that not all projects participate in Uses. 

7. Card(programmer, language; project). Note that the first argument is 
now a set of roles (which we write without braces) rather than just 
one role. The cardinality gives the number of projects in which a 
programmer may participate using a given language, that is, how 
many projects are allowed for a pair (programmer, language). 

8. Card(programmer, project; language), which gives the number of 
languages a programmer may use in a project. 

9. Card(language, project; programmer), which gives the number of 
programmers who may use a language in a project. 

10. Card(programmer; project, language). Note that in this case the 
second argument is a set of two roles rather than just one role, as was 
the case before. The cardinality gives the number of project–language 
pairs in which a programmer may participate. 

Fig. 4.6. Graphical representation of cardinality constraints in ternary associations
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11. Card(language; programmer, project), which gives the number of 
programmer–project pairs that may be related to a language. 

12. Card(project; programmer, language), which gives the number of 
programmer–language pairs that may be related to a project. 

 
The formal definition of cardinality constraints for n-ary relationship 

types is as follows. Let the type be R(p1:E1, …, pn:En), and let p = {p1, …, 
pi} and q = {pi+1, …, pk} be disjoint subsets of roles {p1, …, pn}. We say 
that Card(p; q) = (min,max) if 
 
 E1(e1) ∧…∧ Ei(ei) →  
 min ≤ |{(ei+1, …, ek) | R(e1, …, ei, ei+1, …, ek, …, en)}| ≤ max 
 

When p = {p1:E1} is a single role, q is a set of one or more roles, and 
Cmin(p1; q) > 0 we say that there is total participation of E1 in R with role 
p1, because all instances of E1 always participate in some relationship of R. 
When Cmin(p1; q) = 0, we say that the participation is partial, because not 
all instances of E1 participate in R.  

When Cmax(p; q) = 1, we say that there is a functional correspondence 
between p and q in R, or that there is a functional dependency {p} → {q}. 
Note that p and q are one or more roles. 

It is difficult to show all the cardinality constraints for n-ary types 
graphically. This is the reason why conceptual modeling languages choose 
to show only a few of them. The typical options are: 

• To show Card(p; q; R), where q is a single role and p are the remaining 
roles in R. The value is shown next to the line corresponding to role q. 
This is the option taken by UML. 

• To show Card(p; q; R), where p is a single role and q are the remaining 
roles in R. The value is shown next to the line corresponding to role p. 

The other cardinalities must be shown separately, possibly using a general 
constraint definition language such as OCL in UML. Sometimes a cardi-
nality is unconstrained; this can be considered to be the default value, if 
not stated otherwise. 

In the previous example, the cardinalities could be: 

1. Card(programmer; language) = (0,2) if a programmer cannot use 
more than two languages at a given time.  

2. Card(programmer; project) = (0,5) if a programmer cannot 
participate in more than five projects at any time. 

3.  Card(language; programmer) = (0,∞). This is an example of uncon-
strained cardinality. 
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4. Card(language; project) = (0,∞). 
5. Card(project; programmer) = (1,∞) if all projects must have at least 

one programmer at all times.  
6. Card(project; language) = (1,∞) if all projects must use at least one 

language. 
7. Card(programmer, language; project) = (0,5) if a programmer can-

not use a language in more than five projects at any time. 
8. Card(programmer, project; language) = (0,1) if a programmer can 

use at most one language in a project. 
9. Card(language, project; programmer) = (0,∞). 
10.Card(programmer; project, language) = (0,5). 
11.Card(language; programmer, project) = (0,∞). 
12.Card(project; programmer, language) = (1,∞). 

In UML we can represent only constraints 7, 8 and 9, as shown in Fig. 4.6. 
The remaining nine cardinality constraints, if they are not unconstrained, 
must be defined in the same way as for any other general constraint, as we 
shall see in Chap. 9. 

4.2.1 Consistency and Inference Rules 

The cardinality constraints corresponding to an n-ary relationship type 
R(p1:E1, …, pn:En) are not completely independent of one another. There 
are consistency rules that must be satisfied. If these rules are not satisfied, 
some constraint is either not valid or not defined with the strongest num-
bers. Several of these rules are provided below. Their formalization and 
proofs can be found in the references given at the end of this chapter. In 
the rules, p = {p1, …, pi}, q = {pi+1, …, pk} and s = {pk+1, …, pl} are dis-
joint subsets of roles {p1, …, pn} and ps denotes the union of sets p and s. 
 
• CR1 (augmentation):  

 Cmin(p; q) ≥ Cmin(ps; q)   
 Cmax(p; q) ≥ Cmax(ps; q)   

For instance,  

 Cmax(programmer; language) = 2 ≥  
 Cmax(programmer, project; language) = 1. 
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• CR2 (transitive):  

 Cmin(p; q) * Cmax(q; s) ≥ Cmin(p; qs) 
 Cmax(p; q) * Cmax(q; s) ≥ Cmax(p; qs) 

For instance,  

Card(project; programmer) = (1,∞),  
Card(programmer; language) = (0,2),  
Card(project; programmer, language) = (1,∞),  

were ∞*2 ≥ ∞ and 1*2 ≥ 1. 

• CR3 (decomposition): 

 Cmin(p; qs) ≥ Cmin(p; q) 
 Cmax(p; qs) ≥ Cmax(p; q).   

For instance,  

 Cmax(programmer; project, language) = 5 ≥  
 Cmax(programmer; language) = 2. 

• CR4 (union): 

 Cmin(p; q) * Cmax(p; s) ≥ Cmin(p; qs) 
 Cmax(p; q) * Cmax(p; s) ≥ Cmax(p; qs) 

• CR5 (pseudotransitive):  

 If t ⊆ p,  
  Cmin(p; q) * Cmax(qt; s) ≥ Cmin(p; qs) 
  Cmax(p; q) * Cmax(qt; s) ≥ Cmax(p; qs) 

• CR6 (uniformity):  

 If Cmin(p; q) = 0, then for any q': Cmin(p; q') = 0  

In the above example, Cmin(programmer; language) = 0. According to 
the uniformity rule, all cardinalities for which the first argument is the 
role programmer must have a minimum of zero. 

The above rules can be used as inference rules, that is, rules that allow 
us to infer some cardinalities from others. The best known of these rules 
are the inference rules for functional dependencies, which are as follows: 
 
• IR1 (augmentation):  

 If {p} → {q} then {ps} → {q}. 
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• IR2 (transitive):  

 If {p} → {q} and {q} → {s} then {p} → {s}. 

• IR3 (decomposition):  

 If {p} → {qs} then {p} → {q}. 

• IR4 (union):  

 If {p} → {q} and {p} → {s} then {p} → {qs}. 

• IR5 (pseudotransitive):  

 If {p} → {q} and {qs} → {t} then {ps} → {t}. 
 
Two useful inference rules related to the minimum cardinality are 
 
• IMin1 (uniformity):  

 If Cmin(p; q) = 0, for any q′: Cmin(p; q′) = 0.  

(This is the same as CR6, the uniformity rule.) 
• IMin2 (augmentation):  

 If Cmin(p; q) = 0, for any s: Cmin(ps; q) = 0.  
 

Two useful rules related to the unconstrained maximum cardinality are 
 
• IMax1: If Cmax(ps; q) = ∞, Cmax(p; q) = ∞.  
• IMax2: If Cmax(p; q) = ∞, Cmax(p; qs) = ∞.  

4.3 Maximal Participation 

Let us assume that in the domain of a university, we have the entity types 
Person, Student, Teacher, and Course, and the following relationship type 
(Fig. 4.7), 

Takes (student:Person, Course) 

with partial participation of student in Takes, that is, Cmin (student; 
course) = 0. If we assume that only students can take courses, and that stu-
dents are persons too, then the schema of Takes is unsatisfactory, owing to 
its lack of precision. It is not incorrect, because students are persons, but it 
lacks precision, because not all persons take courses. For this schema, 
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therefore, we must define an additional constraint that guarantees that only 
instances of Student may take courses.  

A simpler schema, which saves us the additional constraint, is Takes 
(Student, Course), in which the participation of Student in Takes may be 
total if all students must take at least one course. 

The above observation leads us to a guideline that we call the maximal-
participation guideline. It has two variants, one simple and the other com-
plex. The formalization of the simple variant is as follows. Let R(p1:E1, …, 
pi:Ei, …, pn:En) be a type such that the participation of pi:Ei in R is partial. 
If the schema includes an entity type E′i such that at any time the following 
conditions hold, 

• E′i (e) → Ei (e)  
• and the entities in the set {ei | Ei (e) ∧ ¬ E′i (e)} cannot participate in R,  

then we should substitute E′i for Ei in R. 
Observe the application of the guideline to Takes (student:Person, 

Course): 

• Students are Persons: Student (e) → Person (e)  
• Persons who are not Students cannot take courses. 
• We should substitute Student for Person in Takes. 

Note that the maximal-participation guideline requires that the entity 
type substituted for participant pi:Ei already exists in the schema. We 
might be tempted to apply the guideline by defining new entity types. For 
example, consider the type Owns (owner:Person, Car), with the partial 
participation of Person. The participation could be made total by defining 
a new entity type CarOwner, whose population would be a subset of that 
of Person, and changing the relationship type schema to Owns 

Fig. 4.7. Example of application of the maximal-participation guideline

Course

Student

Person
Takes

Takes

*

*

Fig. 4.7. Example of application of the maximal-participation guideline

CourseCourse

StudentStudent

PersonPerson
Takes

Takes

*

*
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(owner:CarOwner, Car). However, this change is acceptable only if 
CarOwner is a concept that is already used in (or may be assimilated into) 
the domain. Otherwise, we would compromise the correctness property of 
the CarOwner representation: CarOwner could be considered an artificial 
concept. 

The above simple variant of the guideline is almost a rule, because the 
resulting schemas are always simpler and do not incur any cost. 

The case of the complex variant is not as clear. Let R(p1:E1,…, pi:Ei,…, 
pn:En) be a type such that the participation of pi:Ei in R is partial. If the 
conceptual schema contains a set of entity types Ei,1, …, Ei,m such that at 
any time the following conditions hold: 

• Ei,j (e) → Ei (e)  for j = 1, …, m 

Fig. 4.8. Another example of application of the maximal-participation guideline
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Fig. 4.8. Another example of application of the maximal-participation guideline
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• and the entities in the set {e | Ei (e) ∧ ¬ (Ei,1 (e) ∨ ... ∨ Ei,m (e))} cannot 
participate in R, 

then we should define a new entity type E′i, whose population is the union 
of Ei,1, ..., Ei,m, and substitute E′i for Ei in R.  

This variant of the guideline is not as strong as the previous one. In 
some cases, designers or users may feel that the advantages of obtaining 
more precise participation do not compensate for the cost of defining a 
new entity type (E′i).  

For example, consider the schema shown in Fig. 4.8a, which has the en-
tity types Document, Book, Paper, Journal, and Person, and the relation-
ship type IsWrittenBy (Document, author:Person), with partial participa-
tion of Document. However, we know that 

• Book (e) → Document (e)  
• Paper (e) → Document (e) 
• and the entities in the set {e | Document (e) ∧ ¬ (Book (e) ∨ Paper (e))} 

cannot participate in IsWrittenBy. 

If we were to apply the guideline, we would define a new entity type 
AuthoredDocument, whose population would be the union of Book and 
Paper, and we would substitute AuthoredDocument for Document in Is-
WrittenBy. The participation of AuthoredDocument in IsWrittenBy would 
now total, see Fig. 4.8b. 

4.4 Bibliographical Notes 

Apart from referential integrity constraints, cardinality constraints are the 
best known and more widely used constraints related to relationship types. 
They appeared in Chen (1976) and, since then, they have been adopted for 
almost all conceptual modeling languages. Liddle et al. (1993) presented a 
thorough study of the use of cardinality constraints in conceptual models. 
McAllister (1998) gave a detailed analysis of cardinality constraints in n-
ary relationship types. Thalheim (2000) included a synthesis of most of the 
formal research that had been carried out on cardinality constraints. Siau et 
al. (1997) showed that cardinality constraints play a key role in the under-
standing of relationship types. 

Consistency rules for recursive binary relationship types were presented 
by Dullea and Song (1999) and Dullea et al. (2003). McAllister (1998) 
gave rules for n-ary relationship types. Armstrong (1974) presented the in-
ference rules for functional dependencies and showed that they were sound 
and complete. 
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The initial formulation of the problem of the satisfiability of cardinality 
constraints appeared in Lenzerini and Nobili (1990). That work also pre-
sented a method for discovering unsatisfiable constraints. Our Fig. 4.2 was 
inspired by an example given in that paper. The method was extended by 
Thalheim (1992) and generalized by Hartmann (1998).   

The guideline on maximal participation was described by Batini et al. 
(1992), Boman et al. (1997), Dey et al. (1999), and Wand et al. (1999). An 
even stronger version of the guideline has been advocated by Bodart et al. 
(2001) and Gemino and Wand (2005). 

4.5 Exercises 

4.1 Consider the domain of lists and their elements. A list is an ordered se-
quence of n elements, with n ≥ 0, and without duplicates. An element be-
longs to one, and only one, list. Figure 4.9 shows the two relationship 
types needed to represent the composition of lists, and to allow their tra-
versal. Define the cardinality constraints of these relationship types. 
 
4.2 Consider a change in the domain of the previous exercise: now an ele-
ment may be part of the list more than once (duplicates are allowed, not 
necessarily in consecutive positions). Make the corresponding change in 
Fig. 4.9, and determine the cardinalities of the resulting relationship types. 
Use only binary relationship types.3 

 

                                                      
3 If you are already familiar with the concept of reification (association classes), 

refrain from applying it in this exercise. 

first

Fig. 4.9. Fragment of a conceptual schema for Exercise 4.1

List Element

next

previous

first

Fig. 4.9. Fragment of a conceptual schema for Exercise 4.1

List Element

next

previous
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4.3 Consider another change in the domain in Exercise 4.1: now, an ele-
ment may be part of one or more lists (and not just one) at the same time. 
As in Exercise 4.1, the lists do not contain duplicates. An element may oc-
cupy a different position in each list in which it participates. Make the cor-
responding change in Fig. 4.9, and determine the cardinalities of the result-
ing relationship types. Use only binary relationship types.3 
 
4.4 Consider again the domain of lists and their elements. A list is an or-
dered sequence of n elements, with n ≥ 0. Now, an element may be part of 
a list more than once (duplicates are allowed) and may be part of one or 
more lists at the same time. Figure 4.10 shows a ternary relationship type 
that represents the composition of such lists. Define the complete set (12) 
of cardinality constraints of this type. 
 

4.5 Assume a domain in which there are students, courses and teachers, 
and in which students take courses taught by teachers. In this domain, con-
sider the relationship type Takes (Student, Course, Teacher), shown in Fig. 
4.11, with the following constraints: 

• A teacher teaches one course at most. Some teachers may not teach 
courses. 

• A course is taught by at least one and at most three teachers. 
• A student may take six courses at most. All students take courses. 
• A student has, at most, one teacher for a given course. 
• A course has at least one student. 

Fig. 4.10. Fragment of a conceptual schema for Exercise 4.4

List

position
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Fig. 4.10. Fragment of a conceptual schema for Exercise 4.4
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Natural
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Define the 12 cardinality constraints of Takes. Check that they satisfy the 
consistency rules described in Sect. 4.2.1. Indicate which of these 12 car-
dinality constraints can be represented in the UML diagram shown in Fig. 
4.11. 
 
4.6 We have seen that we can define up to 12 cardinality constraints for a 
ternary relationship type. How many can be defined for a quaternary rela-
tionship type? 
  
4.7 The cardinality constraints of the recursive relationship type shown in 
Fig. 4.5 are not strongly satisfiable. Check that if we change Card(parent; 
child) to (2,2) then it is strongly satisfiable. Give an instantiation of Fig. 
4.5 that strongly satisfies the new cardinality constraints. Explain why this 
instantiation is implausible, and give the cardinalities of such a relationship 
type that you think are plausible. 
 
4.8 One kind of cardinality constraint for n-ary relationship types defined 
in (Liddle et al. 1993) is the co-occurrence constraint. Assume that there is 
a relationship type R(p1:E1, …, pn:En) and let p = {p1, …, pi} and q = {pi+1, 
…, pk} be disjoint subsets of roles {p1, …, pn}. A co-occurrence constraint 

 Co(p; q; R) = (min,max)  

means that a tuple (e1, …, ei) that appears in some relationship of R must 
co-occur (appear together) with at least min and at most max tuples (ei+1, 
…, ek). (Note that min > 0: why?) Formally, using the notation defined in 
Sect. 4.2, we have Co(p; q; R) = (min,max) if 

 min ≤ |{(ei+1, …, ek) | R(e1, …, ei,ei+1, …, ek, …, en)}| ≤ max 

Fig. 4.11. Example of ternary association in UML for exercise 4.5

Student Course

Takes

Teacher

Fig. 4.11. Example of ternary association in UML for exercise 4.5
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1. Define the co-occurrence constraints of Exercise 4.5. 
2. Justify the following relationships between Co-card and the Card 

studied in this chapter: 

• Cmax(p; q; R) = Co-max(p; q; R). 
• If Cmin(p; q; R) > 0, Cmin(p; q; R) = Co-min(p; q; R). 
• If Cmin(p; q; R) = 0, Cmin(p; q; R) < Co-min(p; q; R). 
 



5 Particular Kinds of Relationship Type 

As we saw in Chap. 2, “entity types are concepts whose instances are iden-
tifiable objects …” An entity is identifiable if there is a linguistic expres-
sion that denotes it. Most of these expressions are built from reference re-
lationship types, a particular kind of relationship type described in Sect. 
5.1. In Sect. 5.2, we discuss how to use reference relationship types to 
identify entities. Section 5.3 explains that in general the participants of a 
relationship type should be entity types rather than its identifiers. 

In conceptual modeling, relationship types should be elementary, that is, 
it should not be possible to decompose them into a number of smaller rela-
tionship types without losing information. Section 5.4 describes the con-
cept of elementary relationship types in detail. Bearing in mind that 
nonelementary relationship types should be decomposed, and that a rela-
tionship type may be nonelementary for several reasons, in Sect. 5.5 we 
describe the two most common cases, which are the result of functional 
and multivalued dependencies, and explain how they should be dealt with. 
In the next chapter we will study other kinds of decomposition.  

5.1 Reference Relationship Types 

A reference to an entity e is an expression, written in some language, that 
denotes e. References are generally built from binary relationship types 
that have particular properties. For example, the type HasCapital (Coun-
try, capital:Town) shown in Fig. 5.1 allows references to countries to be 
built, such as “the country whose capital is the town London”. Of course, 
not all relationship types serve to build references. In the present example, 
if a town could be the capital of several countries then HasCapital could 
not be used for that purpose. 

There are three main ways of building references from binary relation-
ship types. Starting with the most widely used way, we describe them be-
low. 
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5.1.1 Simple Reference 

Let R(p:E,p1:E1) be a binary relationship type. We say that R is a simple 
reference relationship type for E or, also, that p1 is a reference to E through 
R if the following properties hold: 

• The correspondence between p1 and p is functional. 
• The participation of E in R with role p is total. 

Moreover, if R is constant with respect to p1, then we say that R is an im-
mutable simple reference to E; otherwise, it is a mutable one. 

Observe that (Fig. 5.1)  

HasCapital (Country, capital:Town)  

is a mutable simple reference to Country (or, equivalently, capital is a ref-
erence to Country through HasCapital), because: 

• The correspondence between capital and country is functional: a town 
may be the capital of one country at most. 

• The participation of country in HasCapital is total: each country has one 
capital. 

• HasCapital is not constant with respect to capital: a country may 
change its capital. 

Note that if the participation of Country in HasCapital were not total, then 
there might be countries without capitals; therefore, we would not be able 
to reference all countries using their capitals. 

Figure 5.1 shows another simple reference to Country: the ISOcode at-
tribute of countries, which is a String. In this case, the reference is immu-
table. 

Figure 5.1 also includes the relationship type (attribute)  

Name (Town, name:String)  

which is a mutable simple reference to Town, because: 

0..1 1

capital

Country

Fig. 5.1. HasCapital and ISOcode are simple references to 
Country. The attribute name is a simple reference to Town

ISOcode:String
{«constant»}

Town

name:String

HasCapital0..1 1

capital

Country

Fig. 5.1. HasCapital and ISOcode are simple references to 
Country. The attribute name is a simple reference to Town

ISOcode:String
{«constant»}

Town

name:String

HasCapital
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• (We assume that) the correspondence between name and town is func-
tional. 

• The participation of Town in Name is total. 
• Name is not constant: a town may change its name. 

5.1.2 Compound Reference 

References to an entity may sometimes be built using not one binary rela-
tionship type, but two or more. For example, from LineOf (OrderLine, Or-
der) and Orders (OrderLine, Product), as shown in Fig. 5.2, we can build 
expressions such as “The order line of product ABC in order 123”. These 
expressions are references provided that orders do not have two order lines 
ordering the same product (although there may be order lines with the 
same product in different orders). 

Let R1(p1′:E,p1:E1), …, Rn(pn′:E,pn:En) be binary relationship types with 
n ≥ 2. We say that the set {R1, …, Rn} is a compound reference to E if for 
each i = 1, …, n: 

• The correspondence between pi and pi′ is nonfunctional. 
• The participation of E in Ri with role pi′ is total. 
• Two instances e, e′ of E cannot be related through R1, …, Rn to exactly 

the same instances e1, …, en, that is, 

 R1(e,e1) ∧ R1(e′,e1) ∧ … ∧ Rn(e,en) ∧ Rn(e′,en) → e = e′ 

If all Ri are constant with respect to pi′, then the set {R1, …, Rn} is an im-
mutable compound reference to E; otherwise, it is a mutable one.  

Figure 5.2 shows two compound references to OrderLine. One is the set 
{LineOf, Orders} because: 

• The correspondence between order and orderLine and between product 
and orderLine is non-functional. 

• The participation of OrderLine in LineOf and in Orders is total. 

Fig. 5.2. The associations LineOf and Orders are a compound reference to OrderLine

*
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Fig. 5.2. The associations LineOf and Orders are a compound reference to OrderLine
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• There are no two order lines ol and ol′ with the same order o and the 
same product p: 

 LineOf(ol,o) ∧ LineOf(ol',o) ∧  
 Orders(ol,p) ∧ Orders(ol',p) → ol = ol' 

The set {LineOf, Orders} is a mutable reference if an order line may 
change its order or its product.  

Note that if an order may have two or more order lines ordering the 
same product (perhaps at different prices), then {LineOf, Orders} is not a 
compound reference to OrderLine.  

The second compound reference is {LineOf, LineNo} because: 

• The correspondence between order and orderLine and between lineNo 
and orderLine is nonfunctional. 

• The participation of OrderLine in LineOf and lineNo is total. 
• There are no two order lines ol and ol′ with the same order o and the 

same line number ln: 

 LineOf(ol,o) ∧ LineOf(ol',o) ∧  
 LineNo(ol,ln) ∧ LineNo(ol',ln) → ol = ol' 

The set {LineOf, LineNo} is a mutable reference if the order or the line 
number of an order line can be changed.  

5.1.3 Set Reference 

The third way of building references to entities is based on a single rela-
tionship type R (as for simple references), although here a reference to an 
entity uses several instances of R and not just one. 

For example, consider the triangles defined in a schema by the relation-
ship type HasVertex shown in Fig. 5.3. Assuming that there are no two tri-
angles with exactly the same vertices, the set of vertices of a triangle is a 
reference to it. We can say, for instance, “the triangle consisting of the 
points A, B, and C”. 

* HasVertex 3

Fig. 5.3. HasVertex is a set reference to Triangle

PointTriangle {«constant»} vertex
* HasVertex 3

Fig. 5.3. HasVertex is a set reference to Triangle

PointTriangle {«constant»} vertex
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Formally, let R(p:E,p1:E1) be a binary relationship type. We say that R is 
a set reference relationship type for E and also that p1:E1 is a set reference 
to E through R, if: 

• The correspondence between p and p1 is nonfunctional. 
• The participation of E in R with role p is total. 
• Two instances e and e′ of E cannot be related through R to exactly the 

same instances of E1, that is, there exists at least one entity e1 to which 
either e or e′ is related, but not both: 

 E(e) ∧ E (e′) ∧ e ≠ e′→ ∃e1(R(e,e1) ∧ ¬R(e′,e1)) 

Moreover, if R is constant with respect to p, then we can say that R is an 
immutable set reference to E; otherwise, it is a mutable one. 

Let us see why HasVertex (Triangle, vertex:Point), shown in Fig. 5.3, is 
an immutable set reference to Triangle (or why vertex is a set reference to 
Triangle, through HasVertex): 

• The correspondence between triangle and vertex is nonfunctional (a tri-
angle has three vertices). 

• The participation of Triangle in HasVertex is total (all triangles have 
vertices). 

• Two different instances of Triangle must have at least one different ver-
tex. 

• HasVertex is constant with respect to Triangle.  

5.2 Identification 

Informally, an entity is identifiable if there is an expression formed by 
lexical entities that denotes it. For example, the expression “The person 
called Mark” is a reference to a person, formed from the lexical entity 
“Mark”. An entity type is identifiable if all its instances are identifiable. 

Entity types may be identified in six main ways. Below, we introduce 
each of them in turn.  

First, all data types are identifiable. This is because their instances, 
which are values, are denoted by one or more literals, predefined by the 
corresponding data type. For example, in XML Schema, the data type In-
teger has a lexical representation consisting of a finite-length sequence of 
decimal digits with an optional leading sign, for instance -1, 0, 
1267896754, or +100000. The same happens in more complex data types 
such as DateTime.  
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Second, an entity type E is identifiable if the schema contains a simple 
reference R(p:E,p1:E1) to E, and E1 is identifiable. This is the most com-
mon case. For example, Town is identifiable if the schema contains the re-
lationship type Name (Town, String), which is a simple reference to Town 
(Fig. 5.1). Similarly, Country is identifiable if the schema contains the type 
HasCapital (Country, capital:Town), which is a simple reference to Coun-
try, and Town is identifiable. 

Third, an entity type E is identifiable if the schema contains a compound 
reference {R1 (p1':E,p1:E1), …, Rn (pn':E,pn:En)} to E, and E1, …, En are 
identifiable. Many entity types are identified in this way. For example, in 
Fig. 5.2, OrderLine is identifiable if the set 

LineOf (OrderLine, Order)  
Orders (OrderLine, Product) 

is a compound reference to OrderLine, and both Order and Product are 
identifiable. 

Fourth, an entity type E is identifiable if the schema contains a set refer-
ence R(p:E,p1:E1) for E, and E1 is identifiable. For example, the entity type 
Triangle (see Fig. 5.3) is identifiable if the schema contains the type Has-
Vertex (Triangle, vertex:Point), which is a set reference to Triangle, and 
Point is identifiable. 

The fifth identification method is the most complex. Consider a domain 
of personal objects, with a schema containing entity types Book, Com-
pactDisc, and Gift. Let us assume that Book and CompactDisc are identifi-
able, but that Gift is not a data type, nor is there a reference to it. There-
fore, in principle, Gift is nonidentifiable. However, let us also assume that 
a gift is necessarily a book or a compact disc, although not all books and 
compact discs are gifts. In this case, Gift is identifiable because its in-
stances can be identified as books or as compact discs. Thus, we can say, 
“The gift that is the book with ISBN code 84-7410-936-1” or “The gift that 
is the compact disc with code 0495-23 and editor AM”.  

Therefore, an entity type E is identifiable if all its instances are also in-
stances of another type that is identifiable. In particular, E is identifiable if 
it is a subtype of an identifiable type. 

Finally, an entity type E is identifiable if its population always consists 
of a single entity. The rationale is that we may refer to that instance with 
an expression such as “the instance of type E”, for example “the instance 
of type Company” or “the Company” in a domain in which there is just one 
company. 
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5.2.1 Identifiability of Entity Types 

Each entity type defined in a conceptual schema must be identifiable, in (at 
least) one of the main ways defined above or in some other special way. 
The rationale behind this requirement is that when an entity type is identi-
fiable, the users and the information system have a shared means to refer 
to its instances. If, on the other hand, an entity type is not identifiable, then 
the users and the information system will be unable to share information 
about instances of it. 

For example, if the schema contains a nonidentifiable entity type Cus-
tomer, then users will not be able to tell the system that a particular cus-
tomer has bought a product. Similarly, if the system produces a report with 
details of the existing customers, users will not be able to relate the cus-
tomers in the report to those that they know in the domain. 

Note that the identifiability requirement is independent of the symbols 
used in the information base to denote the domain objects. These symbols 
are generated internally by the system and are not visible outside it; there-
fore, they cannot be used to identify entities externally.  

5.3 Replacing Entities with Identifiers in Relationships 

The participants of a relationship type R(p1:E1, …, pn:En) are the n entity 
types E1, …, En. Given that each entity type Ei must be identifiable, we 
may be tempted to replace Ei with its identifiers in R and eliminate Ei from 
the schema. The elimination of Ei implies the elimination of all relation-
ship types in which it participates. In general, however, it is not convenient 
to do this transformation. 

Consider, for example, the following binary relationship type and cardi-
nalities (see the UML representation in Fig. 5.4): 

 Name (Building, name:String) 
 Card(building, name) = (1,1) 
 Card(name; building) = (0,1) 

Name is a simple reference for Building: the instances of Building can be 

LocatedIn
* 1

Room

buildingName:String

Building

name:String
Room

Fig. 5.4. The right part shows the replacement of Building by its identifier in 
LocatedIn

LocatedIn
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Room
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name:String
Room LocatedIn

* 1

Room

buildingName:String

Room

buildingName:String

Building

name:String

Building

name:String
RoomRoom

Fig. 5.4. The right part shows the replacement of Building by its identifier in 
LocatedIn
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identified by its name. Consider now the relationship type LocatedIn 
(Room, Building), in which Building is a participant. Given that a building 
can be identified by its name, we may be tempted to apply the above trans-
formation, replacing Building with buildingName:String in LocatedIn to 
obtain 

 LocatedIn (Room, buildingName:String) 

and eliminating Building and Name. The advantage is that the new schema 
(see Fig. 5.4, right) is simpler: there is one fewer entity and relationship 
type (Building and Name). The drawbacks are that the semantics of Locat-
edIn is more obscure (it does not say that rooms are located in buildings), 
that a change in the name of a building requires changing the value of at-
tribute Room::buildingName of all rooms located in that building, and that 
future changes requiring Building to be a participant in some new relation-
ship type, such as 

 LocatedAt (Building, Address) 

will have a significant effect on the previous schema. 
Special care must be taken in the replacement of an entity type identi-

fied by a compound reference. For example, assume that Room is identi-
fied by the compound reference (see Fig. 5.5) 

 LocatedIn (Room, Building) 
 RoomNumber (Room, Natural) 

That is, a room is identified by the building in which it is located and its 
room number. Room participates in the following two relationship types: 

MeetsIn

LocatedIn

MayUse

Room

number:Natural
Committee

Organizes

Building

Meeting *

*
*

*

1

1

1*

Fig. 5.5. Fragment of a schema in which LocatedIn and Room::number are a 
compound reference for Room
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Fig. 5.5. Fragment of a schema in which LocatedIn and Room::number are a 
compound reference for Room
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 MeetsIn (Meeting, Room) 
 MayUse (Committee, Room) 

which have the cardinalities shown in Fig. 5.5. If we want to replace Room 
by its identifiers, we obtain the ternary relationship types 

 MeetsIn′ (Meeting, Building, number:Natural) 
 MayUse′ (Committee, Building, number:Natural) 

In the next section we shall see that MeetsIn′ can be decomposed into 
two binary relationship types, 

 MeetsInBuilding (Meeting, Building) 
 MeetsInRoomNumber (Meeting, number:Natural) 

but MayUse′ cannot be decomposed, and therefore it remains ternary 
(why?).  

5.4 Elementary Relationship Types 

A relationship type R of degree n is elementary if it cannot be decomposed 
into m relationship types R1, …, Rm (m ≥ 2) such that 

• the degree of each R1, …, Rm is less than n,  
• the entity types participating in R1, …, Rm are a subset of those partici-

pating in R, and  
• the population of R at any time can be obtained from the populations of 

R1, …, Rm at that time.  

The instances of elementary relationship types are called elementary rela-
tionships. Note that binary relationship types are always elementary. 

An example of an elementary relationship type is  

GetsGrade (Student, Grade, Course)  

with the pattern sentence 

The student <Student> gets grade <Grade> on the course 
<Course> 

Assuming that it has only one functional dependency, 

{student, course} → {grade} 

GetsGrade is elementary because it is not possible to decompose it into 
two or more binary relationship types R1, …, Rn, such that the population 
of GetsGrade can be obtained from that of R1, …, Rn. 
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An example of a nonelementary relationship type is (see Fig. 5.6, left) 

Authorship (author:Person, Book, Publisher) 

with the pattern sentence 

The person <Person> is an author of the book <Book> published 
by publisher <Publisher>  

and with the cardinalities shown in the figure and the additional functional 
dependency 

 {book} → {publisher} 

Authorship can be decomposed into the two types, WrittenBy and Pub-
lishedBy, shown in Fig. 5.6 (right). Figure 5.7 shows, in tabular form, an 
example of the populations of Authorship, WrittenBy and PublishedBy. It 
can be seen that we can obtain the population of Authorship from that of 
WrittenBy and PublishedBy.  

It is strongly recommended that the relationship types defined in a con-
ceptual schema be elementary. This recommendation is based on the fol-
lowing facts:  

• Elementary relationship types are easier for users and designers to un-
derstand, because they are smaller than nonelementary ones.  

• Elementary relationship types are easier to specify, because they have 
fewer cardinality constraints, their pattern sentences are shorter, etc. 

• Elementary relationships cannot be represented in nonelementary rela-
tionship types. In the above example, we might need to represent the 
publisher of a new book before we know who the authors are. We can-
not do this in Authorship, and it is possible only if we have the elemen-
tary type PublishedBy. 

• In general, the occurrence of events may change the populations of rela-
tionship types. It is easier to specify the changes to elementary relation-

Fig. 5.6. Authorship is nonelementary and can be decomposed into WrittenBy
and PublishedBy
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ship types than those to nonelementary ones. In the above example, we 
might have an event type that changes the publisher of a book. An in-
stance might be a change in the publisher of Book B1 to P2. As we can 
see in Fig. 5.7, if we have the Authorship type we need to change three 
relationships (rows), while only one relationship must be changed in the 
elementary PublishedBy. 

In the next section, we study how to decompose nonelementary relation-
ship types into elementary ones.  

5.5 Decomposing NonElementary Relationship Types 

A nonelementary relationship type R should be decomposed into a set R1, 
…, Rm (m ≥ 2) of elementary types. The decomposition must satisfy a goal 
called information preservation, which means that the population of R at 
any time can be obtained from the populations of R1, …, Rm at that time.  

Nonelementary relationship types can be decomposed in several ways. 
In this chapter, we are only interested in decompositions such that 

• the degree of each R1, …, Rm is less than that of R, and 
• the entity types participating in R1, …, Rm are a subset of those partici-

pating in R. 

In the next chapter we will study other kinds of decomposition. 
A relationship type may be nonelementary for several reasons. In this 

chapter, we shall focus only on the two most common cases, which are the 
results of functional and multivalued dependencies. See the references 
given at the end of this chapter for other, less frequent cases. 

Fig. 5.7. Examples of populations of the relationship types shown in Fig. 5.6

Authorship WrittenBy                  PublishedBy

Book   Author   Publisher          Book   Author Book   Publisher

B1         A1 P1 B1         A1 B1 P1
B1         A2 P1 B1         A2 B2 P2
B1         A3 P1 B1         A3
B2         A3 P2 B2         A3

Fig. 5.7. Examples of populations of the relationship types shown in Fig. 5.6

Authorship WrittenBy                  PublishedBy

Book   Author   Publisher          Book   Author Book   Publisher

B1         A1 P1 B1         A1 B1 P1
B1         A2 P1 B1         A2 B2 P2
B1         A3 P1 B1         A3
B2         A3 P2 B2         A3

Authorship WrittenBy                  PublishedBy

Book   Author   Publisher          Book   Author Book   Publisher

B1         A1 P1 B1         A1 B1 P1
B1         A2 P1 B1         A2 B2 P2
B1         A3 P1 B1         A3
B2         A3 P2 B2         A3
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5.5.1 Decomposition Based on Functional Dependencies 

If a relationship type R(p1:E1, …, pn:En) has a functional dependency p → 
q where p = {p1, …, pi} and q = {pi+1, …, pk} are disjoint subsets of roles 
{p1, …, pn}, and p ∪ q ⊂ { p1, …, pn}, then R can be decomposed into two 
new relationship types R1 and R2, with the schemas 

   R1(p1:E1, …, pi:Ei, pi+1:Ei+1, …, pk:Ek) 
   R2(p1:E1, …, pi:Ei, pk+1:Ek+1, …, pn:En) 

Every functional dependency that satisfies the above conditions is a poten-
tial decomposition of R. If there are two or more, one of them should be 
chosen using the criteria described below. If the new relationship types are 
nonelementary then they should be decomposed again. 

Let us illustrate this decomposition with a simple example that poses no 
particular problems: the relationship type Authorship (author:Person, 
Book, Publisher) shown in Fig. 5.6 (left). Authorship has two functional 
dependencies: 

 {book} → {publisher} 
 {book, author} → {publisher} 

For the purposes of decomposing Authorship, the second functional de-
pendency does not count, because it does not hold that1 

  {book, author} ∪ {publisher} ⊂ {author, book, publisher} 

Therefore, Authorship can be decomposed in only one way. The result is 
the following relationship types (see Fig. 5.6, right): 

 PublishedBy (Book, Publisher) 
 WrittenBy (Book, author:Person) 

The cardinalities of PublishedBy and WrittenBy are four of the twelve car-
dinalities of Authorship. What happens to the eight remaining cardinal-
ities? Two cases arise: they either can or cannot be inferred from those of 
PublishedBy and WrittenBy. In the former case, we say that the 
cardinalities are preserved. In the latter case, we say that some cardinality 
is not preserved. If some constrained cardinality is not preserved in the de-
composition then we have to define it explicitly in an appropriate manner. 
In the example in Fig. 5.6, the constrained cardinalities of Authorship are: 

 Card(book; publisher) = (1,1) 

                                                      
1 Recall that A ⊂ B means that A is a proper subset of B, that is, that A is a subset 

of B, but A is not equal to B. 
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 Cmin(book; author) = 1 
 Card(book; author, publisher) = (1,1) 
 Cmax(book, author; publisher) = 1 

It can be shown that these constraints are preserved in the decomposition 
given in Fig. 5.6 (right). 

Figure 5.8 shows an example in which a constrained cardinality is not 
preserved in the decomposition. Serves is a ternary relationship type with 
the pattern sentence 

 The domestic airline <DomesticAirline> serves airport <Airport> 
 located in country <Country> 

Serves has the following three constrained cardinalities: 

 Cmax(domesticAirline; country) = 1 
 Cmax(domesticAirline, airport; country) = 1  
                  (shown in Fig. 5.6a)) 
 Cmax(airport; country) = 1 

Therefore, there are two potential decompositions:  

• one based on {domesticAirline} → {country}, shown in Fig. 5.8b and 
• one based on {airport} → {country}, shown in Fig. 5.8c.  

In both cases, a functional dependency is not preserved: {airport} → 
{country} in the first case, and {domesticAirline} → {country} in the latter 
case.  
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When all potential decompositions preserve the same number of con-
straints, we can select any one of these decompositions; otherwise, we se-
lect the decomposition that preserves the greatest number of constraints. In 
the example in Fig. 5.8 both decompositions preserve the same number of 
constraints; therefore, choosing between (b) and (c) is a matter of personal 
taste. The constrained cardinalities that are not preserved in a decomposi-
tion must be defined some other way. In Chap. 9, which is devoted to in-
tegrity constraints, we look closely at how the cardinalities should be for-
mally defined. 

5.5.2 Decomposition Based on Multivalued Dependencies 

If a relationship type cannot be decomposed on the basis of functional de-
pendencies, we should then analyze whether it can be decomposed on the 
basis of multivalued dependencies. In the following paragraphs, we first 
introduce the concept of a multivalued dependency by means of an exam-
ple, then we give a formal definition, and afterwards we explain how a re-
lationship type that satisfies a multivalued dependency should be decom-
posed. 

Figure 5.9a shows a ternary relationship type Evaluates. Its pattern sen-
tence is 

 In contest <Contest> juror <Person> evaluates  
 participant <Person> 

Let us assume that in a contest, each juror evaluates each participant and 
that a person may be a juror or a participant in several contests. None of 
the cardinalities of Evaluates is a functional dependency, but each contest 
determines two sets: a set of jurors and a set of participants. This is called 
a multivalued dependency, denoted by contest ->> juror|participant. The 
set of jurors in a contest is independent of the set of its participants. An in-
stance of Evaluates such as 

 Evaluates (MusicContest, Salieri, Mozart) 

represents two independent facts: that Salieri is a juror in MusicContest, 
and that Mozart is one of its participants. If Rossini is another participant 
in the same contest, then we have the relationship 

 Evaluates (MusicContest, Salieri, Rossini) 

which correctly represents the fact that Rossini participates in MusicCon-
test, although it does unfortunately “duplicate” the fact that Salieri is a ju-
ror in that contest. Evaluates can (and should) be decomposed into the two 
relationship types shown in Fig. 5.9b, as the duplication then disappears.  
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We shall now formalize the multivalued dependencies for ternary rela-
tionship types R(x:X, y:Y,z:Z). The extension to higher degrees is easy. We 
say that R satisfies the multivalued dependency x ->> y (or that x ->> y 
holds for R) if 

 ∀x,z1,z2 ({y|R(x,y,z1)} = {y|R(x,y,z2)}) 

That is, R satisfies the multivalued dependency x ->> y if the set of values 
of y that appear with a given x and z1 also appear with each combination of 
x and z2 in R. Therefore, this set is a function of x alone and does not de-
pend on the z-values that appear with x. 

Whenever x ->> y holds in R(x:X, y:Y, z:Z), so does x ->> z. Hence x ->> 
y implies x ->> z; therefore, it is often written as x ->> y|z. 

The application of the formalization to the above example is as follows. 
The multivalued dependency {contest} ->> {juror}|{participant} holds for 
Evaluates if the set of jurors related to a contest and a participant is the 
same as the set of jurors related to the same contest and any other partici-
pant in that contest. In other words, every participant in a given contest is 
evaluated by exactly the same jurors. 

The multivalued dependencies that hold for a relationship type cannot 
be determined from the cardinalities, as they are additional constraints. 
This is a noteworthy difference with respect to functional dependencies, 
which can be determined from cardinalities. 

If a relationship type R(p1:E1, …, pn:En) satisfies the multivalued de-
pendency p ->> q|s, where p = {p1, …, pi} and q = {pi+1, …, pk} are dis-
joint subsets of the roles {p1, …, pn}, and s = {pk+1, …, pn} = R – p – q, 
then R can be decomposed into two new relationship types R1 and R2 with 
the following schemas: 

   R1(p1:E1, …, pi:Ei, pi+1:Ei+1, …, pk:Ek) 
   R2(p1:E1, …, pi:Ei, pk+1:Ek+1, …, pn:En) 

Fig. 5.9. Evaluates (a) satisfies the multivalued dependency contest ->> 
juror|participant, and can be decomposed into the two relationship types 
shown in (b)

*

* juror
*

*

Contest Person Contest Person
Evaluates

*participant

juror

participant

**

(a) (b)

*

* juror
*

*

Contest Person Contest Person
Evaluates

*participant

juror

participant

**

(a) (b)

Fig. 5.9. Evaluates (a) satisfies the multivalued dependency contest ->> 
juror|participant, and can be decomposed into the two relationship types 
shown in (b)

*

* juror
*

*

Contest Person Contest Person
Evaluates

*participant

juror

participant

**

(a) (b)

*

* juror
*

*

Contest Person Contest Person
Evaluates

*participant

juror

participant

**

(a) (b)



118      5 Particular Kinds of Relationship Type 

This decomposition is information-preserving. Decomposing Evaluates 
(Fig. 5.9a) in this way gives the two relationship types shown in Fig. 5.9b. 

It may be useful to analyze why a multivalued dependency that appar-
ently holds for a relationship type may not in fact hold. Let us assume that 
we add to the example in Fig. 5.9 the score that a juror gives to a partici-
pant in a contest. We obtain the quaternary relationship type Scores shown 
in Fig. 5.10. The functional dependency is  

 {contest, juror, participant} → {score}.  

Apparently, the multivalued dependency  

 {contest} ->> {juror}|{participant}  

that holds for Evaluates also holds for Scores. Now we have four partici-
pants, and the multivalued dependency should be  

 {contest} ->> {juror}|{participant, score}.  

This will, however, hold only in the (unlikely) case that all jurors in a con-
test always give a participant the same score. If, for example, the following 
relationships were valid, 

 Scores (MusicContest, Salieri, Mozart, 5) 
 Scores (MusicContest, Chopin, Mozart, 10) 

then the above multivalued dependency would not hold for Scores. If two 
jurors (Salieri, Chopin) can give different scores to the same participant 
(Mozart), then {contest} ->> {juror}|{participant, score} does not hold, 
and Scores cannot be decomposed. 

Fig. 5.10. Scores does not satisfy the multivalued dependency {contest} ->> 
{juror}| {participant, score}
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5.5.3 Decomposition by Absorbing a Constant Entity Type 

The above decompositions based on functional and multivalued dependen-
cies should be applied whenever possible. In contrast, there is another kind 
of decomposition that should be applied only in special cases. 

Consider the ternary relationship type Serves shown on the left in Fig. 
5.11. An instance represents the fact that a person serves on a committee as 
an officer. There are three kinds of officer, given by the instances of Offi-
cerType: chair, vice chair, and secretary. 

Serves can be decomposed as shown in the right part of Fig. 5.11. There 
is a binary relationship type for each instance of OfficerType. We say that 
the constant entity type OfficerType is absorbed into the relationship type 
Serves, resulting in three relationship types, one for each instance of the 
absorbed type. 

The advantage of this decomposition is that, like the others that we have 
seen before, it reduces the degree of a relationship type. However, it has 
several drawbacks: 

• It increases the number of relationship types in the schema. 
• It does not make it explicit that the resulting relationship types have the 

same underlying concept. 
• The new schema is less stable: in the example shown in Fig. 5.11 the 

addition of a new officer type would induce a significant change into the 
schema. 

Fig. 5.11. Decomposition of Serves by absorbing OfficerType
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5.6 Bibliographical Notes 

The requirement that entity types must be identifiable is implicitly or ex-
plicitly stated in almost all conceptual modeling languages. Sundgren 
(1975) introduced the concept of reference and their variants. The ER 
model introduced by Chen (1976) deals extensively with entity identifica-
tion. It includes the concept of a weak entity type, which corresponds to an 
entity type identified by means of a simple or compound reference involv-
ing one or more relationship types that are not attributes. See (Balaban and 
Shoval 1999) for a thorough analysis of weak entity types in ER schemas. 

Kent (1978, Chap. 3) described some possibilities and difficulties in en-
tity identification. Nijssen and Halpin (1989, Chap. 7) described simple 
and compound references; this description has been extended by De 
Troyer et al. (1988) and Halpin (2001). The work of Hofstede and Weide 
(1993) presented and formalized the concept of entity type identification. 
(Thalheim 2000, Chap. 8) provided a detailed explanation of identification 
in the HERM approach. Gogolla (2000) presented a unifying approach 
based on the so-called observation terms.  

The replacement of entity types by their identifiers was discussed by 
Batini et al. (1992), Hainaut (1996) and Halpin (2001). 

The need for elementary relationship types had already been recognized 
when conceptual modeling first began to be studied (Langefors 1974). The 
basic constructs of the entity–relationship model introduced by Chen 
(1976) are also elementary. Some languages, such as NIAM, by Nijssen 
and Halpin (1989) strongly emphasize elementary relationship types.  

The theory of relationship type decomposition is based on the classical 
relational dependency theory developed in the field of databases for rela-
tional models. There are several good textbooks that provide a comprehen-
sive description of this theory. (Ullman 1988) is a classic, while (Elmasri 
and Navathe 2003) is more recent. Multivalued dependencies were intro-
duced by Fagin (1977). 

In the ER model, (Ling 1985) is one of the earliest references to the 
decomposition of ER relationships in the context of a method for convert-
ing ER diagrams into relational database definitions. Jones and Song 
(1996) described the decomposition of ternary relationship types on the 
basis of an analysis of cardinality constraints. A synthesis of this work can 
be found in (Thalheim 2000). McAllister and Sharpe (1998) presented a 
detailed procedure for the decomposition of n-ary relationship types, 
which takes into account functional and multivalued dependencies, as well 
as join dependencies, a peculiar constraint only rarely found in practice. 
Decomposition by absorbing a constant entity type was presented in (Hal-
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pin and Proper 1995b, Assenova and Johannesson 1996); a thorough 
analysis was given in (Halpin 2001, Chap. 12.2). 

5.7 Exercises 

5.1 Consider a schema for the domain of papers published in scientific 
journals. Suppose that the schema includes the entity types Journal, Vol-
ume, Issue, and Paper. Journals are identified by their name. Volumes are 
identified by the journal and the year of publication. Journal issues are 
identified by the volume and the number, or by the volume and the month 
of publication. Papers are identified by the journal issue in which they ap-
pear and their title, or by the journal issue and the initial page of the paper 
in the issue. Complete the schema with the necessary relationship types 
(associations or attributes), and explain how each entity type could be 
identified. 
 
5.2 Give an example of an existence dependency relationship type which is 
a simple reference, and another one which is not. State the condition that 
an existence dependency relationship type must satisfy to be a simple ref-
erence. 

 
5.3 Decompose the relationship type 

HasAccount (holder:Person, Account, InterestRate) 

whose pattern sentence is 

 The person <Person>  
is a holder of <Account> that pays the interest rate <InterestRate> 

taking into account the functional dependency:  

{account} → {interestRate} 
 
5.4 Consider the following relationship type: 

 Represents (representative:Person, Country, Organization) 

whose pattern sentence is 

 The person <Person>  
is the national representative of <Country> in <Organization> 

Suppose that the functional dependencies that hold in Represents are 
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 {organization, country} → {representative} 
 {representative} → {country} 

Is Represents elementary? If it is not, how would you decompose it? 
 
5.5 Consider the following relationship type: 

 Authorship (author:Person, Book, Paper) 

whose pattern sentence is 

 The person <Person>  
is an author of the book <Book> and of the paper <Paper> 

The only constrained cardinalities of Authorship are the following: 

 Card(book; author) = (1,∞) 
 Card(paper; author) = (1,∞) 

Determine the multivalued dependency that holds in Authorship. How 
would you decompose this relationship type? 
 
 



 

6 Reification 

Reifying a relationship consists in viewing it as an entity. The word “reifi-
cation” comes from the Latin word res, which means “thing”. Reification 
has a well-known equivalent in natural language, nominalization, which 
basically consists in turning a verb into a noun. Reification is widely used 
in conceptual modeling; conceptual modelers must therefore have a good 
grasp of it. In Sect. 6.1, we define reification and explain its logical basis. 
Reification can easily be defined in UML, as we show in Sect. 6.2. In 
some languages, however, reification cannot be defined as easily, so one 
must instead use implicit reification, which is also described in Sect. 6.2. 
Implicit reification is an interesting schema transformation that can be 
used in other contexts. 

In Sect. 6.3, we explain that reification may be partial; in this case, reifi-
cation becomes a schema transformation that can improve the quality of a 
schema in given circumstances. 

6.1 Definition 

We shall introduce the concept of reification by means of an example, be-
fore giving its formal definition. Consider the relationship type IsMem-
berOf (member:Person, Committee). Figure 6.1 (left) shows an example 
population of IsMemberOf in tabular form. Person P1 is a member of 
committees C1 and C2. Person P2 is a member of C1 only. 

An instance of IsMemberOf is a relationship that represents the fact that 
a person is a member of a committee. The same fact, however, could also 
be viewed as an entity. When we view a relationship as an entity, we say 
that the entity reifies the relationship. The reification of a relationship con-
sists in viewing it as an entity. Like any other, this entity must be an in-
stance of an entity type. In the present example, the entity type has been 
named Membership. For each instance of IsMemberOf, there is one and 
only one instance of Membership, and vice versa. 

In linguistics, reification corresponds to a well-known phenomenon 
called nominalization, which consists in turning a verb into a noun (such as 
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“move” > “movement”, “swim” > “swimming” or “be a member” > 
“membership”). 

Generalizing to the level of types, we say that IsMemberOf is reified 
into the entity type Membership. This entity type has a distinct instance for 
each instance of IsMemberOf, as illustrated in Fig. 6.1 (α, β, λ). For exam-
ple, the instance α of Membership corresponds to the instance (P1,C1) of 
IsMemberOf. 

The instances of Membership must be related to the participant entities 
of IsMemberOf. Otherwise, we would not know which relationship is rei-
fied by a given instance of Membership. The correspondence between the 
instances of Membership and those of IsMemberOf is established by means 
of a binary relationship type for each participant of IsMemberOf. In the 
present example, we have two binary relationship types: 

 R1 (Membership, Person) 
 R2 (Membership, Committee) 

These relationship types are called intrinsic because they can be seen as 
part of the new entity type. Figure 6.1 (right) shows the populations of R1 
and R2, which relate memberships to people and committees, respectively. 
It can be seen that we may obtain the instances of IsMemberOf from the 
instances of Membership and those of its two intrinsic relationship types.  

The reification of a relationship type does not add any new knowledge 
to a schema, but it is necessary when we need to record additional facts re-
garding the instances of a relationship type. In the present example, the rei-
fication of IsMemberOf allows us to record the date on which a person be-

Fig. 6.1. IsMemberOf is reified into Membership. R1 and R2 are the intrinsic 
relationship types
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comes a member of a committee, the role (chair, secretary, etc.) that per-
son plays in the committee, and so on. 

Formally, the reification of a relationship type R(p1:E1, …, pn:En) is an 
entity type E and n intrinsic binary relationship types Ri(p:E,pi:Ei), (i = 1, 
…, n), which have the following properties: 

1. The Ri are existence dependency relationship types. This means that 
they are constant with respect to p, that an instance of E always refers 
to the same relationship of R, and that Card(p; pi; Ri) = (1,1). There-
fore, the functional dependency {p} → {pi} holds in Ri.  

2. Card(pi; p; Ri) = Card(pi; p1, …, pi-1, pi+1, …, pn; R). 
3. There is a one-to-one correspondence1 between the populations of R 

and E: 

R(e1, …, en) → ∃!e(E(e) ∧ R1(e,e1) ∧ ... ∧ Rn(e,en)) 
R1(e,e1) ∧ ... ∧ Rn(e,en) → R(e1, …, en) 

The above definition guarantees that we can, at any time, obtain the in-
stances of R from the instances of E and the instances of its intrinsic rela-
tionship types.  

If, for some Ri, the functional dependency {pi} → {p} holds, then Ri is a 
simple reference to E. Otherwise, the set {R1, …, Rn} is a compound refer-
ence to E. 

Let us apply this definition to our present example. The reification of 
IsMemberOf (member:Person, Committee) is the entity type Membership 
and the two intrinsic relationship types R1 (Membership, Person) and R2 
(Membership, Committee), with the following properties: 

1. R1 and R2 are existence dependency relationship types. They are con-
stant with respect to membership, and Card(membership; person; R1) 
= Card(membership; committee; R2) = (1,1). 

2. If Card(person; committee; IsMemberOf) = (0,∞) and 
Card(committee; person; IsMemberOf) = (1,∞), then Card(person; 
membership; R1) = (0,∞) and Card(committee; membership; R2) = 
(1,∞). 

3. There is a one-to-one correspondence between the populations of Is-
MemberOf and Membership: 

 IsMemberOf(p,c) → ∃!m(Membership(m) ∧ R1(m,p) ∧ R2(m,c) 
  R1(m,p) ∧ R2(m,c) → IsMemberOf(p,c) 

                                                      
1 Note that ∃!e(Φ(e,…)) means that there is one and only one e for which Φ(e,…) 

is true. 
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The set {R1, R2} is a compound reference to Membership. 

6.2 Representation in UML  

We first study how reification should be represented in UML. We shall see 
that this language has a particular construct for that purpose; not all lan-
guages do, however. We shall show that when conceptual modelers use 
languages that lack reification constructs, they can define implicit reifica-
tions. This kind of reification is an interesting schema transformation, 
which we study at the end of the section. 

6.2.1 Association Classes 

UML provides the association class construct for defining reified relation-
ship types. An association class is a single model element that is both a 
kind of association and a kind of entity type. The association and the entity 
type that reifies it are the same model element. Note that attributes cannot 
be reified. 

An association class is shown as an entity type symbol attached to the 
reified association path by a dashed line. Logically, the association class 
and the association are the same semantic entity; they are, however, 
graphically distinct. In this representation, the intrinsic relationship types 
are implicit and are not shown graphically. Figure 6.2 shows in UML the 
example given in the previous section. 

The association symbol and the association class symbol represent the 
same underlying model element, which has a single name. The name may 
be placed on the association path, in the entity type symbol, or in both po-
sitions, but the name must be the same. In this book, we place the name in 

Committee

Membership

Person 1..* *

Fig. 6.2. Membership is an association class

member

role:Role

Committee

Membership

Person 1..* *

Fig. 6.2. Membership is an association class

member

role:Role
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the entity type symbol only; therefore, it follows the rules for entity type 
names. In Fig. 6.2, the name of the reified relationship type (IsMemberOf) 
is not shown. 

Association classes may have attributes and may be related to other en-
tity types. Figure 6.2 shows an example: Membership has an attribute role, 
which indicates the role played by a person in a committee. Note that, in 
UML, associations cannot have attributes. The only way to define an at-
tribute of an association is by means of an association class.  

Reification may also be applied to n-ary relationship types. Figure 6.3 
shows the reification of a ternary association in UML. The pattern sen-
tence of the association is 

 The home team <Team> plays against the visitor team <Team>  
 on <Date> 

The association is reified into an entity type Match. This allows us to de-
fine three relationship types in which Match is a participant: two attributes 
(score and spectators), and an association with Stadium. Note that the at-
tributes are optional, because their values are not known until a match has 
been played. 

6.2.2 Implicit Reification 

Some conceptual modeling languages do not have a construct for explicitly 
defining the reification of a relationship type. The Logic language, for ex-
ample, does not provide a construct to indicate that one predicate has been 
reified into another.  

*Team

homeTeam
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0..1
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Match

score:Score [0..1]
spectators:Natural [0..1]
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*

0..1

Fig. 6.3. Example of reification of a ternary association
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Conceptual schemas written in one of these languages cannot define the 
reification a relationship type R into an entity type E. In these cases, an al-
ternative option is to define an implicit reification, as follows: 

1. Define the entity type E. 
2. Define the intrinsic relationship types. 
3. Define the reification uniqueness constraint (see below). 
4. Optionally, define R as a derived type. 

Figure 6.4 gives the implicit reification of the relationship type IsMem-
berOf shown in Fig. 6.2. The two intrinsic relationship types that were im-
plicit in the explicit reification (Fig. 6.2) are now explicit (Fig. 6.4). 

The reification uniqueness constraint requires that for any pair (person, 
committee) there is at most one membership. This constraint is implicit in 
the explicit reification, because two links of type IsMemberOf cannot have 
exactly the same participants. In implicit reification, this constraint must 
be defined explicitly. We shall see in Chap. 9 how this constraint can be 
formally defined. 

When the reification is implicit, the reified relationship type R is gener-
ally not shown. However, if desired, R may be defined as a derived rela-
tionship type. We shall see in Chap. 8 how to define derived relationship 
types. 

The implicit reification of an n-ary relationship type has a side effect 
that is worth mentioning. We shall illustrate it by means of the example of 
a ternary association shown in Fig. 6.3, whose implicit reification is given 
in Fig. 6.5. The following constrained cardinalities have a graphical repre-
sentation in Fig. 6.3, although unfortunately they are “lost” in Fig. 6.5: 

 Card(homeTeam, date; visitor) = (0,1) 
 Card(visitor, date; homeTeam) = (0,1) 

Fig. 6.4. Membership is an implicit reification of the association shown in 
Fig. 6.2
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Fig. 6.2

Committee

Membership

Person

1..**

member

role:Role

11

{«constant»} {«constant»}

Committee

Membership

Person

1..**

member

role:Role

11

{«constant»} {«constant»}



6.2 Representation in UML      129 

 

Instead, the implicit reification shows three unconstrained cardinalities. 
The “lost” constrained cardinalities should be expressed in a general con-
straint definition language, as we shall explain in Chap. 9.  

 The reification uniqueness constraint requires that, for any tuple (home 
team, visitor, date), there is one match at most. This constraint is implicit 
in the explicit reification because two instances of type Match cannot be 
related to exactly the same home team, visitor, and date. In the implicit rei-
fication in Fig. 6.5, this constraint must be defined explicitly.  

6.2.3 Implicit Reification as a Schema Transformation 

A characteristic of implicit reification is that it transforms any relationship 
type into a set of existence dependency relationship types, which are bi-
nary, nonrecursive, constant with respect to a participant, and a functional 
dependency holds in them.  

As a result of the above characteristic, implicit reification is an interest-
ing schema transformation because it can transform any relationship type 
in a schema into a set of relationship types with particular properties. This 
result can be very useful for the analysis of certain properties of schemas 
and in system design. 

The input to the transformation is the relationship type R with its com-
plete set of cardinalities. The output is:  

1. The new entity type E. 
2. The intrinsic relationship types, including their cardinalities.  
3. A set of integrity constraints corresponding to the constrained cardi-

nalities of R not included in item 2. 
4. The reification uniqueness constraint. 
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The transformation preserves the information and the constraints of R. The 
population of R at any time can be derived from the population of E and 
that of the intrinsic relationship types at that time.  

6.3 Partial Reification 

Let us consider an example that will give us an intuitive understanding of 
partial reification. Assume the relationship type (Fig. 6.6) 

 Reservation (Room, Date, Customer, Resource) 

with the pattern sentence 

 Room <Room> is reserved for day <Date> by  
 customer <Customer>, who requires the room to be equipped  
 with resource <Resource>  

along with the functional dependency 

 {room, date} → {customer} 

Reservation is nonelementary and should therefore be decomposed. Using 
the procedure described in the preceding chapter, Reservation may be de-
composed into the following relationship types (Fig. 6.7):  

 Reserves (Room, Date, Customer)  
 Requires (Room, Date, Resource)  

Fig. 6.6. Reservation is a nonelementary relationship type
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The problem is that the populations of the two types are not independent. 
A pair (room, date) appearing in one of them must also appear in the other. 
For example, if Reserves has the relationship  

 {<room:Room1>, <date:05/10/31>, <customer:ABC>}  

then Requires must necessarily have one or of the more relationships  

 {<room:Room1>, <date:05/10/31>, <resource:_>},  

and vice versa. Therefore, there is a constraint involving the populations of 
Reserves and Requires: their projections to {room, date} must be the same. 

Most languages (including UML) do not have a construct for easily de-
fining constraints such as the one above; therefore, they must be defined in 
a general constraint definition language.  

An alternative consists in reifying the common participants of the rela-
tionship types into a new entity type E and replacing those participants 
with E. This is called partial reification and is illustrated in Fig. 6.8. The 
association room–date is the projection of Reserves or Requires to {room, 
date}. This association is reified into a new entity type called Reservation. 
Then, Reservation replaces the participants {room, date} in Reserves and 
Requires. Now the common part of the two associations is clearly shown, 

Fig. 6.7. Reserves and Requires have two common participants
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and the above constraint involving the populations of Reserves and Re-
quires is not needed. 

More precisely, the partial reification of a relationship type R(p1:E1, …, 
pn:En) in the set of roles {p1, …, pi} ⊂ {p1, …, pn} is a schema transforma-
tion whose output is 

1. A relationship type R′(p1:E1, …, pi:Ei) that corresponds to the projec-
tion of R to{p1, …, pi}. 

2. The cardinalities of R that apply to R′. 
3. The reification of R′ into a new entity type E. 
4. The relationship type R′′(E,pi+1:E i+1, …, pn:En). 
5. The cardinalities of R that apply to R′′ and the cardinality Cmin(e; 

pi+1, …, pn; R′′) = 1. This new minimum cardinality comes from the 
fact that each instance of E corresponds to a tuple (p1, …, pi) that ap-
pears in an instance of R and that is therefore related to at least one 
tuple (pi+1, …, pn). 

The transformation preserves the information and the constraints of R. 
The population of R can be obtained from the populations of R′, E (and its 
intrinsic relationship types), and R′′. 

Let us apply this transformation to Reserves (Room, Date, Customer) 
with the roles {room, date}. The output is: 

1. The relationship type R′(Room, Date) that corresponds to the projec-
tion of Reserve to {room, date}. 

2. The two cardinalities of Reserves that apply to R′, which are shown in 
Fig. 6.7. In this case, both are unconstrained. 

3. The reification of R′ into a new entity type Reservation. 
4. The relationship type ReservedBy (Reservation, Customer). 
5. The two cardinalities of Reserves that apply to ReservedBy, and 

Cmin(reservation; customer; ReservedBy) = 1, which are shown in 
Fig. 6.8.  

Fig. 6.8. Example of partial reification of the two common participants of the 
relationship types shown in Fig. 6.6
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In the example in Fig. 6.8, the constraint is that the projections of Re-
serves and Requires to {room, date} must be the same. However, partial 
reification can also be applied when one projection must be a subset of the 
other. A simple change to the example illustrates this well. Assume in Fig. 
6.7 that a reservation need not require a resource in the room reserved. In 
this case, the constraint is that the projection of Requires to {room, date} 
must be a subset of the projection of Reserves to the same participants: a 
room may require a resource on a particular day only if that room is re-
served by a customer for that day. Partial reification could be applied in 
this case as was done in the previous case. The result would be the same as 
that shown in Fig. 6.8, except that we would now have Card(reservation; 
resource; Requires) = (0,∞).  

6.4 Bibliographical Notes 

Many conceptual modeling languages provide a specific construct for rela-
tionship reification and give guidelines on its use. Among these languages 
are NIAM, presented in Nijssen and Halpin (1989), and YSM, described in 
Yourdon (1993). Martin and Odell (1995) discussed several graphical 
symbols for reification. In this book, we have adopted the symbol pro-
posed for UML. 

Most work on reification has been carried out in the context of a particu-
lar language, although the results are applicable to most languages. Nijssen 
and Halpin (1989, Sect. 10.3) discussed reification in detail in the context 
of NIAM. The discussion was continued (now in the context of ORM) in 
Halpin (2001, Sect. 12.3). Both gave an extensive coverage of reification. 
Rochfeld and Negros (1993) put forward an approach in which the partici-
pants in a relationship type may also be relationship types, which was fol-
lowed in HERM (Thalheim 2000). Rosenthal and Reiner (1994) character-
ized the properties of intrinsic relationship types, and this work was 
extended in Snoeck and Dedene (1998), which explained in detail the (im-
plicit) reification of any relationship type and gave a complete characteri-
zation of intrinsic relationship types. Olivé (1999) studied reification from 
a temporal perspective, and identified three kinds of temporal reification. 
Evermann and Wand (2005) analyzed reification from the perspective of 
Bunge’s ontology and suggested several rules for its use. 

Under the name of “pivoting”, and in the context of the “participants 
may be relationship types” approach, partial reification was presented by 
Biskup et al. (1996). Hartmann (2001) extended that work by taking into 
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account cardinality constraints. A different approach to partial reification 
was presented by Hainaut (1996). 

6.5 Exercises 

6.1 Consider the schema fragment shown in Fig. 6.9. Assume that we now 
want to record the order of authors and the institution in which each author 
performed the work described in the paper. The association WorksIn repre-
sents the institution for which a person currently works. For example, the 
paper “Database abstractions: Aggregation and generalization” was written 
by John Miles Smith (first author) and Diane C. P. Smith (second author). 
For this paper, the authors’ institutions are the same (University of Utah), 
but this is not the general rule.  

1. Extend Fig. 6.9 to include this knowledge, using reification. 
2. Extend Fig. 6.9 to include this knowledge, using implicit reification.  

 
6.2 In UML, define the implicit reification of the relationship type 

 Manages (boss:Employee, subordinate:Employee) 

with the following cardinalities: 

 Card(boss; subordinate) = (0,10) 
 Card(subordinate; boss) = (0,1) 
 
6.3 Consider the schema fragment shown in Fig. 6.10, which is used to 
represent the (acyclic) composition of parts. Assume that we now want to 
record the quantity of a component required to make one unit of an assem-
bly. For example, the assembly WoodenChair uses four units of the com-
ponent WoodenLeg. Also, we want to record the alternative parts that an 
assembly may use when we run out of a given component. For example, if 
we run out of legs when assembling a wooden chair, we can use iron or 
plastic legs instead. Extend Fig. 6.10 to include this knowledge, using rei-
fication. 

Fig. 6.9. A paper is written by one or more authors. A person may work in an 
institution
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6.4 Assume that a conceptual schema includes the following relationship 
types: 

 IsEnrolled (Student, Course) 
 TakesExam (Student, Course, Date, Mark) 

Students can take exams only for the courses in which they are enrolled. 
There is only one constrained cardinality: Card(student, course, date; 
mark; TakesExam) = (0,1). Using reification, define these relationship 
types and constraints in UML.  
  
6.5 Extend Fig. 6.3 to include the following relationship types, 

 Plays (Team, Player, Match, minutes:Natural, role:Role) 
 Coaches (Team, Match, Coach) 

which have the following pattern sentences: 

 As part of team <Team>, player <Player> plays in  
 match <Match> during <Natural> minutes in  
 role <Role> 
and 

 Coach <Coach> coaches team <Team> for match <Match> 

A player may play in different teams for different matches. A coach may 
coach various teams for different matches. Assume that the populations of 
Player and Coach are disjoint. 

Plays and Coaches satisfy the following cardinality constraints: 

 Card(player, match; team, minutes, role; Plays) = (0,1) 
 Card(coach, match; team; Coaches) = (0,1) 
 Card(team, match; coach; Coaches) = (0,1) 
 Card(match; team; Coaches) = (0,2) 
 Card(match; coach; Coaches) = (0,2) 

There are also the following constraints: 
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“If player p plays in match m as part of team t, then t must be the 
home team or the visitor of m.” 
“If coach c coaches team t in match m, then t must be the home 
team or the visitor of m.” 

Given that Plays is nonelementary (why?), it must be decomposed. If 
you find several (reasonable) solutions, describe only the one you prefer. 
Explain how the populations of Plays and Coaches can be obtained from 
the population of the entity and relationship types in your solution. How 
would you represent the above constraints in your solution? Note: do not 
change the reification shown in Fig. 6.3. 

 
6.6 Analyze whether or not the schema fragment of Fig. 6.5 can be auto-
matically obtained from that of Fig. 6.3. Explain the result of your analy-
sis. 



7 Generic Relationship Types 

In the four preceding chapters, we studied relationship types without tak-
ing into account their particular meaning. In general, the meanings of the 
relationship types existing in a schema are very diverse. However, there 
are some relationship types that appear in many schemas and even several 
times in the same schema. They are the subject of this chapter: in Sect. 7.1 
we define them, and in Sect. 7.2 we show how they can be represented in 
an information system. 

There are many generic relationship types. In this chapter, we study four 
of them. In Sect. 7.3, we describe the most important of these: the part–
whole relationship. In Sects. 7.4, 7.5, and 7.6, we explore grouping, roles 
and materialization, respectively. 

7.1 Definition 

Some relationship types are ubiquitous. We find them in most schemas and 
often several times in the same schema. The most prominent example is 
the relationship type IsPartOf (part:Entity, whole:Entity). In the domain of 
books, for example, we find that chapters are part of books, paragraphs are 
part of chapters, exercises are part of chapters, and so on. Similarly, in the 
domain of regional planning, we find that towns are part of regions, re-
gions are part of countries, districts are part of towns, and so on. 

Another well-known example is the relationship type IsMemberOf 
(member:Entity, group:Entity). In some domains, we may find that a tennis 
player is a member of a tennis club, that a person is a member of a team, or 
that a person is a member of a committee.  

From a conceptual modeling perspective, the two characteristics com-
mon to these relationship types are: 

• The entity types of the participants are highly generic, such as Entity in 
the cases of IsPartOf and IsMemberOf. 

• The participants in any of these relationships must be an instance of a 
valid combination of entity types, called a realization. In IsPartOf, the 
realizations in the above domains are Chapter–Book, Paragraph–
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Chapter, Exercise–Chapter, Town–Region, Region–Country and Dis-
trict–Town. A relationship in which the two participants are not an in-
stance of any of these realizations is not valid. Thus, a relationship in 
which part is a chapter and whole is an exercise would not be valid. 

Relationship types that have the above characteristics are called generic 
relationship types. Formally, a generic relationship type R is a relationship 
type R(p1:E1, …¸ pn:En) that may have a set of m realizations (m ≥ 0) in a 
schema, and whose instances must satisfy a realization constraint. A reali-
zation is a set {p1:E1,i, …¸ pn:En,i}, where p1, …¸ pn are the roles of R, and 
Ej,i are entity types. The realization constraint ensures that 

• if the entities e1, …¸ en participate in an instance of R, then  
• they are an instance of a set E1,i, …¸ En,i of entity types, such that  
• {p1:E1,i, …¸ pn:En,i} is a realization. 

The general form of the realization constraint of a generic relationship 
type R with m realizations {p1:E1,i, …¸ pn:En,i}, i = 1, …¸ m, is 

R(e1, …¸ en) →  
[(E1,1(e1) ∧ … ∧ En,1(en)) ∨ … ∨ (E1,m(e1) ∧ … ∧ En,m(en))] 

The realization constraint is in addition to the referential integrity con-
straints that the instances of all relationship types must satisfy.  

For example, the generic relationship type 

 IsPartOf (part:Entity, whole:Entity) 

could have three realizations (m = 3) in a particular schema 

 {part:Chapter, whole:Book} 
 {part:Paragraph, whole:Chapter} 
 {part:Exercise, whole:Chapter} 

The realization constraint is then 

 IsPartOf(p,w) → [(Chapter(p) ∧ Book(w)) ∨  
             (Paragraph(p) ∧ Chapter(w)) ∨ (Exercise(p) ∧ Chapter(w))] 

This realization constraint is in addition to the referential constraints of Is-
PartOf, which are 

 IsPartOf(p,w) → Entity(p) 
 IsPartOf(p,w) → Entity(w) 

Often, a participant pj is, in all realizations, an entity type Ej,i that is a 
subtype of the corresponding participant Ej in R. In this case, the referen-
tial integrity constraint on Ej is redundant. This happens in the above ex-
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ample, because Chapter, Book, Paragraph, and Exercise are subtypes of 
Entity, but this need not be the case in general. 

An ordinary relationship type can be seen as a generic relationship type 
without realizations. The realization constraint does not apply to ordinary 
types because they do not have realizations. 

Besides IsPartOf and IsMemberOf, there are many more generic rela-
tionship types. All share the above characteristics (they must have realiza-
tions and must satisfy a realization constraint), but each may have its own 
additional characteristics. We shall study several generic relationship types 
in this chapter. 

7.2 Representation in an Information System 

A variety of methods may be used to represent generic relationship types. 
In this chapter we discuss some of these. Readers who are interested will 
find references to other methods in the bibliographical notes. We study the 
representation first in logic and then in UML.  

7.2.1 Logical Representation 

The simplest method for representing generic relationship types may be 
described as “one relationship type for each realization”. Let R(p1:E1, …¸ 
pn:En) be a generic relationship type with m realizations. The method con-
sists in defining, in the conceptual schema, a relationship type Ri(p1:E1,i, 
…¸ pn:En,i) for each realization i = 1, …, m. A distinct predicate is used to 
represent each relationship type. 

By way of example, consider the generic relationship type IsPartOf 
(part:Entity, whole:Entity), with the following three realizations: 

 {part:Chapter, whole:Book} 
 {part:Paragraph, whole:Chapter} 
 {part:Exercise, whole:Chapter} 

The representation in the conceptual schema would comprise the following 
relationship types: 

 ChapterOfBook (part:Chapter, whole:Book) 
 ParagraphOfChapter (part:Paragraph, whole:Chapter) 
 ExerciseOfChapter (part:Exercise, whole:Chapter) 

In this method, it is not necessary to explicitly define the realization 
constraint in the conceptual schema. This constraint is implicit because 
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each realization has its own relationship type. For example, none of the 
above relationship types would allow one to define a chapter as part of an 
exercise. 

Defining a new realization is straightforward: one need only define a 
new relationship type. Note that these relationship types are like any other 
in the schema; thus, there is no formal way of detecting that they are reali-
zations of a generic relationship type. The lack of an explicit generic rela-
tionship type is a drawback of this method. In some applications, we may 
need to know which are the realizations of a generic relationship type or to 
define knowledge that is common to all realizations, such as integrity con-
straints and derivation rules. 

Generic relationship types are explicit in a representation method that 
may be referred to as “realizations as subtypes”. In this method, a generic 
relationship type R(p1:E1, …¸ pn:En) with m realizations (m ≥ 0) is 
represented in the conceptual schema by m + 1 relationship types: 

• The generic relationship type R itself. 
• A relationship type Ri(p1:E1,i, …¸ pn:En,i) for each realization i = 1, …, m, 

with the same number (n) and name (pj) of roles as it has in R (as in the 
previous method). 

The relationship type R is defined as a derived type. Its derivation rule 
takes the general form 

R(e1, …¸ en) ↔ R1(e1, …¸ en) ∨ … ∨ Rm(e1, …¸ en) 

The Ri are then subtypes of R.  
Note that, in this method, there is a relationship type R whose popula-

tion comprises all the instances of the generic relationship type. The exis-
tence of this relationship type allows us to centralize the definition of the 
knowledge that is common to all realizations. For example, in relation to 
IsPartOf, we could define that no entity may be a direct or indirect part of 
itself. 

7.2.2 Representation in UML 

The two methods mentioned above can be applied directly in UML. How-
ever, there is a third method that is more appropriate to this language. This 
method may be described as “one marked relationship type for each reali-
zation”.  

The idea behind the method is to define a relationship type for each re-
alization, similarly to what occurs in the “one relationship type for each re-
alization” method. In this case, however, all the realizations of a generic 
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relationship type have a mark that distinguishes them from the others. The 
effect of such a mark on the conceptual schema is predefined. 

The best example of this is the generic relationship type IsPartOf. UML 
differentiates between two variants of this type: aggregation and composi-
tion. Aggregation associations are marked graphically by a hollow dia-
mond attached to the entity type whole. Composition associations are 
marked graphically by a filled-in diamond.  

In UML, the only predefined generic relationship type is IsPartOf. Oth-
ers may be added using the stereotyping extension mechanism, as we ex-
plain later on in this chapter.  

7.3 Part–Whole Relationships 

7.3.1 Description 

The best known generic relationship type is the part–whole relationship, 
also known as composition or aggregation. We shall call it IsPartOf here. 
Many relationships between two concrete entities may be considered to be 
instances of it. Informally, we define an instance of IsPartOf involving en-
tities P and W by saying that 

• P is part of W, or that 
• W is a composite formed by P (and possibly other entities). 

IsPartOf is a binary relationship type in which one entity plays the role of 
a part, and the other the role of the whole. In some languages (including 
English), there are many different ways of expressing such relationships, 
which emphasize either the whole or the parts. The following are exam-
ples:  

• The monitor is part of (is a component of) the computer. 
• The computer has (includes) a monitor. 

Part–whole relationships are important because they define the part–
whole structure of domain objects. Given the fact that we view many ob-
jects as composites and that we tend to distinguish many parts in these ob-
jects, there is a definite need for part–whole relationships. Dictionaries de-
fine many concepts by their parts or by the wholes of which they are a 
part. For example, a definition of “chair” might be “a seat for one person, 
which has a back, usually four legs, and sometimes two arms”. 

Instances of IsPartOf are also called meronymic relationships (from the 
Greek word méros, which means “part”). If P is part of W, then we say that 
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P is a meronym of W and that W is a holonym of P. In conceptual model-
ing, these relationships are usually called aggregations or compositions, al-
though these terms have unfortunately become overloaded with a diversity 
of meanings and we shall not use them here. 

It is usually accepted that IsPartOf is antisymmetric: if P is part of W, W 
cannot be part of P. It also seems natural to consider that IsPartOf is tran-
sitive: if P is part of W and W is part of W2, then P is part of W2. However, 
the transitivity of IsPartOf is controversial. Transitivity leads to acceptable 
results in many cases, but there are cases in which it does not hold. A 
popular example of this is  

• the conductor’s arm is part of the conductor, and  
• the conductor is part of the orchestra.  

We cannot, however, infer that “the conductor’s arm is part of the orches-
tra”. Therefore, whenever a conceptual schema uses IsPartOf, whether or 
not transitivity is assumed should be made clear. 

7.3.2 Representation in UML 

IsPartOf is the only generic relationship type for which UML provides a 
specific language construct. In fact, UML distinguishes between two kinds 
of IsPartOf, aggregation and composition, and provides two slightly dif-
ferent constructs for them. UML assumes that IsPartOf is both antisym-
metric and transitive. 

Aggregation conveys the thought that the whole is the sum of its parts. 
However, the only real constraint is that the aggregation relationship must 
be transitive and antisymmetric across all aggregation links in the informa-
tion base. 

Aggregation is shown by a hollow diamond adornment at the end of the 
association line which connects it to the whole. If there are two or more 
aggregations to the same whole, they may be drawn as a tree by merging 
the ends of the aggregation into a single segment (see a similar example 
for compositions in Fig. 7.2). The diamond should be noticeably smaller 
than the diamond notation for n-ary associations. The names of the roles 
need not be part and whole: we know that the role of whole is played by 
the entity type connected to the diamond. 

Figure 7.1 shows three examples of aggregation. A bus line consists of a 
set of segments and a set of bus stops. Bus stops and segments may be part 
of several bus lines. A bus stop is part of a town. 

Composition is a stronger form of aggregation that requires that a part 
be included in at most one whole at a time. The whole is called a compos-
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ite. An entity may be part of different composites during its life, but only 
one at a time. In a composition, the multiplicity of the role of whole must 
be either 0..1 or 1. Composition is shown by a filled-in diamond adorn-
ment at the end of the association line which connects it to the composite.  

Figure 7.1 shows three examples of composition. A bus line is part of a 
city bus service or of an intercity bus service. A city bus service is part of a 
town.  

7.3.3 Part Sharing 

Part sharing refers to the fact that an entity may be a (shared) part of sev-
eral wholes. There are two kinds of sharing: local and global. Local shar-
ing takes into account only one IsPartOf realization, whereas global shar-
ing considers all of the IsPartOf realizations in a schema. 

Let R(part:P, whole:W) be a relationship type corresponding to an Is-
PartOf realization. We say that P is locally exclusive in R if the instances 
of P may be parts of just one entity of type W in R; otherwise, P is locally 
shared in R.  

Local sharing is expressed by means of Cmax(part; whole; R). If 
Cmax(part; whole; R) = 1, then P is locally exclusive in R; otherwise (if it 
is greater than one), P is locally shared. 

In Fig. 7.1 the parts are locally exclusive in four of the IsPartOf realiza-
tions, and locally shared in the other two. For example, a bus stop may be 
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part of just one town (locally exclusive) but it may be part of several bus 
lines (locally shared). 

Local sharing does not allow us to define an entity as part of at most one 
whole. Local exclusivity implies that an entity is part of at most one whole 
in a realization; that entity, however, could be a part of another whole in 
another realization. 

Let P be an entity type in a schema in which P is a part in one or more 
IsPartOf realizations. We say that P is globally exclusive in that schema if 
its instances can be a part in at most one of those realizations; otherwise, P 
is globally shared. If an entity type is globally exclusive, then it must be 
locally exclusive in all realizations in which it is a part. 

In UML, global exclusivity can easily be defined by means of the com-
position construct, as we have seen before. If an association is a composi-
tion, it is understood that the entity type that plays the role of the part is 
globally exclusive. 

In Fig. 7.1, BusLine and CityBusService are globally exclusive. BusLine 
can be part of CityBusService or InterCityBusSevice, but not of both. BusS-
top and Segment are globally shared. 

7.3.4 Part Dependency 

Part dependency refers to the fact that the existence of the parts may de-
pend on the existence of the wholes. Here there are also two kinds of de-
pendency: local and global. Local dependency takes into account only one 
IsPartOf realization, whereas global dependency considers them all.  

Let R(part:P, whole:W) be a relationship type corresponding to an Is-
PartOf realization. We say that P is locally dependent in R if the instances 
of P must be parts of at least one entity of type W in R; otherwise, P is lo-
cally independent in R.  

Local dependency is expressed by means of Cmin(part; whole; R). If 
Cmin(part; whole; R) ≥ 1, then P is locally dependent in R; otherwise, 
(zero) P is locally independent. 

In Fig. 7.1, the parts are locally dependent in four of the IsPartOf reali-
zations, and locally independent in the other two. BusLine is locally inde-
pendent in the two realizations of which it is a part. BusStop is locally de-
pendent in the two realizations of which it is a part. 

Local dependency does not allow us to define an entity as part of at least 
one whole. Local dependency implies that an entity must be part of a 
whole in a realization, but we could require an entity to be part of at least 
one whole in a given realization defined in a schema. 
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Let P be an entity type in a schema in which P is part of one or more Is-
PartOf realizations. We say that P is globally dependent in that schema if 
its instances must be parts of at least one of those realizations; otherwise, P 
is globally independent.  

In Fig. 7.1, BusLine, BusStop, Segment, and CityBusService are globally 
dependent. In particular, BusLine is globally dependent because its in-
stances must be part of an instance of either CityBusService or InterCity-
BusService. 

If an entity type P is globally dependent and it is part of two or more Is-
PartOf realizations, then it must be locally independent in all of them. On 
the other hand, if an entity type P is part of just one IsPartOf realization in 
which it is locally dependent, then P must be globally dependent. 

7.4 Grouping 

7.4.1 Description 

Another well-known generic relationship type is Grouping, also known as 
association or membership. We represent it here using the schema IsMem-
berOf (member:Entity, group:Entity). Many relationships between two 
concrete entities may be considered to be instances of it. Informally, we 
define an instance of IsMemberOf involving entities M and G by saying 
that 

• M is a member of G, or that 
• G is a collection that includes M (and possibly other entities). 

IsMemberOf is a binary relationship type in which one entity plays the role 
of a member, and the other the role of a group. In some languages (includ-
ing English), there are many different ways of expressing these relation-
ships, which emphasize either the group or the members. The following 
are examples:  

• A person is a member of (belongs to) a club. 
• A team includes (has) a player. 

IsMemberOf bears a resemblance to IsPartOf, but the differences be-
tween them are significant enough to warrant treating them differently. All 
members of a group perform the same function, whereas each part of a 
whole may play a different function. The members are always independent 
of the groups, because their existence does not depend on the existence of 
groups. Members are always shared by groups, because a member may be-
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long to several groups. Moreover, IsMemberOf is not considered to be 
transitive. For example, from 

• Person is a member of PoliticalParty, and  
• PoliticalParty is a member of Coalition  

we cannot infer that “Person is a member of Coalition”. Also, combina-
tions of IsPartOf and IsMemberOf are not transitive, as illustrated by the 
following example, 

• Bavaria is part of Germany, 
• Germany is a member of the UN, 

from which we cannot infer that Bavaria is part of or is a member of the 
UN. 

Like IsPartOf, it is usually accepted that IsMemberOf is antisymmetric: 
if M is a member of G, then G cannot be a member of M. 

7.4.2 Representation in UML  

UML does not provide a built-in construct for defining an association as a 
realization of IsMemberOf. However, we can extend the language by 
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means of stereotypes. We can define a new association stereotype such 
that the associations stereotyped by it correspond to the realizations of Is-
MemberOf. By using this stereotype, we can easily identify the realizations 
of IsMemberOf in a schema.  

We will assume that we have an association stereotype named «IsMem-
berOf». The stereotype may be used in binary associations. The first role 
of the association is the member role and the second is the group role. Fig-
ure 7.2 shows three examples of associations with this stereotype. In a 
school, a student is a member of a class and may be a member of several 
sports teams. A coach may be a member of several sports teams. Recall 
that for binary associations shown by a vertical line we follow the conven-
tion that the top role is the first, if not indicated otherwise (by means of an 
arrow). 

7.4.3 Homogeneous Versus Heterogeneous Groups 

An entity type G is a homogeneous group when it plays the group role in 
one or more realizations such that the member role is played by only one 
entity type M. An entity type G is a heterogeneous group when it plays the 
group role in two or more realizations such that the member role is played 
by two or more distinct entity types. Note that if G plays the group role in 
only one realization, then it is homogeneous. 

In Fig. 7.2, Class is a homogeneous group, whereas SportsTeam is a 
heterogeneous one. 

7.5 Roles 

7.5.1 Description 

The concept of a role is one of the most controversial concepts in concep-
tual modeling. This is due partly to the fact that it is used with at least two 
different meanings, and partly to the fact that it can be represented in sev-
eral different ways in conceptual schemas. 

We have seen one meaning of “role” in Chap. 3: each participant in a re-
lationship type plays a role in it. For example, in Lives (resident:Person, 
placeOfResidence:Town) the first participant plays the role of resident and 
the second the role of place of residence. In this meaning, a role is simply 
a name given to a participation of an entity type. In the logical representa-
tion of relationship types, roles are never used. 
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In this chapter, we study another meaning of “role”, according to which 
it is not a name but a kind of entity type. It is unfortunate that we have to 
use the same term to convey two different meanings, although we are quite 
sure that the context will make it clear in which sense the term is being 
used in each case. 

A role r is a set of properties that characterize a situation which the in-
stances of an entity type E may be in at a given time. We say that r is a 
role of E or that E plays the role r. Normally, the instances of E are in a 
given situation only temporarily, and not all instances of E need to be in 
the same situation. For example, “is a student” is a role of Person. 

In conceptual modeling, roles are represented in two main ways: by sub-
typing and by surrogates. Representation by subtyping means defining an 
entity type Er as a subtype of E such that the instances of Er are those of E 
that play the role r. For example, we could define the entity type Student as 
a subtype of Person, such that the instances of Student are the persons that 
have the property “is a student”. This representation of roles is analyzed in 
Chap. 10 (taxonomies). 

Representation by surrogates means defining an entity type Er such that 
an instance er of Er is a surrogate for an entity e that plays the role r. For 
example, we could define the entity type Student thus: if p is an instance of 
Person that “is a student”, then there will be an instance s of Student that 
will be a surrogate of p. In this case we can also say that p plays the role s, 
or that s is a role of p. Each instance of Person that is a student has a sur-
rogate of p in Student.  

The correspondence between er (the surrogate) and e is a relationship 
that is an instance of the generic relationship type IsRoleOf (role:Entity, 
player:Entity). There is a realization of this type for each role/player com-
bination in the schema, for example the realization {role:Student, 
player:Person}. 

In a realization of IsRoleOf, the first participant entity type is called a 
role type, and the second a player type. The same entity type can be a 
player type in several realizations, but an entity type cannot be a role type 
in two or more realizations. A role type in a realization can be a player 
type in another one, but there cannot be cycles. For example, we may have 
the realizations {role:Student, player:Person} and {role:GraduateStudent, 
player:Student}. 

IsRoleOf is antisymmetric: if er is a role of e, then e cannot be a role of 
er. Moreover, IsRoleOf is considered to be transitive. In the above exam-
ple, a graduate student is also a role of a person. 

An instance of a role type is the role of one, and only one, player. An in-
stance of a player type may play several roles. Therefore, 
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 Card(role; player; IsRoleOf) = (1,1) 
 Card(player; role; IsRoleOf) = (0,∞) 

Additionally, an instance of a role type is always the role of the same 
player. When an instance of a role type is created, it is related to its player 
by means of an IsRoleOf relationship, which cannot be changed. When an 
entity e ceases to play a role, its corresponding surrogate er is deleted, and 
the IsRoleOf relationship (er,e) is removed. Therefore, IsRoleOf is constant 
with respect to role and it is an existence dependency relationship type. 

As we have seen, an instance of a player type can play several roles. In 
general, the roles played by an entity will belong to different role types. 
However, there are cases in which an entity is considered to play several 
roles of the same role type. An example might be the participation of per-
sons in conferences, with the realization {role:Participant, player:Person}. 
A person may participate in several conferences at the same time. If we 
consider that each participation is a different role, then a person may have 
two or more roles (surrogates) in Participant. 

7.5.2 Representation in UML 

UML does not provide a built-in construct for defining an association as a 
realization of IsRoleOf. However, as in the previous case, we can extend 
the language by using stereotypes. We can define a new association stereo-
type such that the associations stereotyped by it correspond to the realiza-
tions of IsRoleOf. By using this stereotype, we can easily identify the re-
alizations of IsRoleOf in a schema.  

We shall assume that we have an association stereotype named «Is-
RoleOf». The stereotype may be used in binary associations. The first role 
of the association is the role type. It is not necessary to specify that the as-
sociations stereotyped by «IsRoleOf» are constant with respect to its role. 
It is understood that this constraint is part of the meaning of the stereotype, 
just like being antisymmetric and transitive.   

Figure 7.3 shows five examples of associations with this stereotype that 
we might find in a conference management system. Persons may partici-
pate in conferences. An instance of Participant corresponds to the role 
played by a person in a conference. A person may participate in several 
conferences at the same time; he may therefore play several Participant 
roles. The set of associations {person–participant, participant–
conference} is a compound reference to Participant. 
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Being an officer at a conference is one way of participating in it. Officer 
is therefore a role of Participant. Note that Participant is an example of a 
role type that plays roles.  

Each conference has a program committee. Being a program committee 
member (PCMember) is another way of participating in a conference. 
Thus, PCMember is a role of Participant.  

Most participants register for a conference. RegisteredParticipant is 
therefore a role of Participant. When registered persons attend the confer-
ence they play the role of Attendee.  

7.5.3 Propagation 

When roles are represented by surrogates, roles do not “inherit” the attrib-
utes and associations of their players. For example, in Fig. 7.3, the in-
stances of Participant do not have an email address attribute: the email 
address as an officer may be different from that as a person; and if a person 
plays several officer roles, the email addresses for each of these roles may 
be different. 

If we want to propagate some of the attributes and/or associations of the 
player type to the role type, we can define them in the role type as derived 
attributes and/or associations. The derivation rule will state that their val-
ues are the same as those of the player type. In the example in Fig. 7.3, if 
we want to explicitly define that an attendee has an email address that is 
the same as the one he has as a registered participant, we define the de-
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rived attribute email address in Attendee. The derivation rule will state that 
the value of this attribute is the same as that of RegisteredParticipant.  

7.6 Materialization 

7.6.1 Description 

Materialization has been studied less than the other generic relationship 
types described in this chapter. However, we do often find realizations of it 
in most domains and, for this reason, we feel it deserves as much attention 
as the other types. We represent it using the schema Materializes (materi-
alization:Entity, model:Entity). A well-known example of realization is 
{materialization:Car, model:CarModel}. Informally, we define the model 
entity of an instance of Materializes as a model, a type, an abstract view or 
a specification of the materialization entity. For example, a car model has a 
set of attributes (such as the name or the number of doors) that are com-
mon to the cars of that model, and a set of constraints is specified that must 
be satisfied by all cars of that model (such as the set of available colors or 
the possible engine sizes).  

Some other examples of realizations are 

• Production–Play. A theater play may be produced in several ways. A 
production materializes the model given by the play: for example, the 
Lincoln Center Theater’s production of Shakespeare’s Henry IV. 

• Performance–Production. A performance materializes a production on a 
particular date. 

• Seat–SeatType. A theater classifies its seats by type. A seat type is a 
model for a number of seats. A seat materializes a seat type. 

• BookCopy–Book. A library may have many copies of the same book. A 
book copy materializes a book. 

• FlightInstance–Flight. A flight instance materializes a flight on a 
particular date.  

Materializes is a binary relationship type in which one entity plays the 
role of the materialization, and the other the role of the model. Material-
izes is antisymmetric: if mat is a materialization of mod, then mod cannot 
be a materialization of mat. Moreover, Materializes is considered to be 
transitive. If a performance materializes a production and a production ma-
terializes a play, a performance is considered to materialize a play. 

An instance of a materialization entity type is the materialization of one, 
and only one, instance of a model entity type. An instance of a model en-
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tity type may be materialized in several instances of a materialization en-
tity type. Therefore,  

 Card(materialization; model; Materializes) = (1,1) 
 Card(model; materialization; Materializes) = (0,∞) 

However, an instance of a materialization entity type always material-
izes the same model. When an instance of a materialization entity type is 
created, it is related to its model by a Materializes relationship, which can-
not be changed. When a model entity mod ceases to exist, its correspond-
ing materializations must also cease to exist, and the corresponding in-
stances of Materializes are removed. Therefore, Materializes is constant 
with respect to materialization and it is an existence dependency relation-
ship type. 

7.6.2 Representation in UML 

UML does not provide a built-in construct for defining an association as a 
realization of Materializes. However, as in the previous cases, we can ex-
tend the language by using stereotypes. We can define a new association 
stereotype such that the associations stereotyped by it correspond to the re-
alizations of Materializes. By using this stereotype, we can easily identify 
the realizations of Materializes in a schema.  

Fig. 7.4. Several examples of Materializes in a theater domain
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We shall assume that we have an association stereotype named «Mate-
rializes». The stereotype may be used in binary associations. The first role 
of the association is the materialization entity type. It is not necessary to 
specify that the associations stereotyped by «Materializes» are constant 
with respect to the first role. It is understood that this constraint is part of 
the meaning of the stereotype, just like being antisymmetric and transitive.   

Figure 7.4 shows three examples of materialization. A production mate-
rializes a play, and a performance materializes a production. A production 
is staged at a theater. A theater classifies its seats into seat types. A seat 
materializes a seat type. A booking requests a number of seats of a given 
type for a particular performance. Specific seats will be assigned to it at a 
given time.  

7.6.3 Inheritance 

As we have seen, a model entity is a model, a type, an abstract view or a 
specification of a materialization entity. This means that materialization 
entities inherit attributes, associations and constraints from their models. 
Specifically, we can state the following: 

• In UML, we can define the attributes and associations inherited by a 
materialization entity from its model in the materialization type as de-
rived attributes and associations. The derivation rule will state that their 
values are the same as those of the model. 

• The attributes and associations of a materialization entity may be con-
strained by the attributes and associations of its model. 

Figure 7.4 shows two examples of attribute inheritance. The title of a 
Production is inherited from its Play. The derivation rule of title in Pro-
duction will state that the title of a production is the title of its play. The 
price of a Seat is inherited from its SeatType. The derivation rule of price 
in Seat will state that the price of a seat is the price given by its seat type.  

Figure 7.4 also shows an example of model attributes that constrain ma-
terialization attributes: the date of a performance must be in the interval 
between the beginning and ending dates of the production. In Chap. 9, we 
shall explain how these constraints should be formally specified. 

7.7 Bibliographical Notes 

Most of the work on generic relationship types has focused on particular 
types, mainly the part–whole. There has also been a lot of work for par-
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ticular applications, mainly spatiotemporal applications; see, for example, 
MADS (Parent et al. 2006).  

Storey (1993) provided one of the first analyses of the most widely used 
generic relationship types. More comprehensive analyses can be found in 
Goldstein and Storey (1999) and Dahchour et al. (2005). Olivé (2002) ana-
lyzed the methods of representation of generic relationship types in con-
ceptual modeling. 

Part–whole relationship types have been extensively studied in the fields 
of philosophy, linguistics, and cognitive science, although few texts other 
than Artale et al. (1996), published in a special issue of Data and Knowl-
edge Engineering on “Modeling Parts and Wholes”, have provided a uni-
fied view of these relationship types from a conceptual modeling perspec-
tive.  

The work in the disciplines mentioned above that has had the most 
wide-ranging influence on the conceptual modeling field is that of Winston 
et al. (1987), and its continuation in Chaffin et al. (1988) and Chaffin and 
Herrmann (1988). In these publications, a classification of part–whole rela-
tionships was provided. Iris et al. (1988) provided a similar classification 
and commented on the problems of transitivity in these relationships. 
These works identified several kinds of part–whole relationship, and 
showed that in general transitivity holds when it is applied with relation-
ships of the same kind. Martin and Odell (1995) described a method that 
adopts the classification given in Winston et al. (1987), with few changes. 

The most relevant work on part–whole relationships has been in the 
field of object-oriented databases. A pioneering system was Orion, de-
scribed in what are now considered classic texts by Kim et al. (1987, 
1989). Orion was the first system based on a data model extended with 
part–whole relationships, which allowed global sharing and a variant of 
global dependency to be defined. Several research lines have continued 
this work. One of them is described in Halper et al. (1998), which deals 
with attribute propagation from the whole to its parts and vice versa. 

In the conceptual modeling field, Motschnig-Pitrik (1993) and Motsch-
nig-Pitrik and Kaasboll (1999) described sharing and dependency in terms 
of cardinality constraints, and gave a formalization in Telos. Henderson-
Sellers and Barbier (1999) and Opdahl et al. (2001) extended the semantics 
of part–whole relationships by distinguishing between main and secondary 
characteristics. Lambrix (2000) described a representation of part–whole 
relationships in Description Logics. 

(Brodie 1981) was the first paper that presented the concept of 
association in the context of conceptual modeling, which was analyzed fur-
ther by Motschnig-Pitrik and Storey (1995). 
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The controversial nature of roles has given rise to an abundant literature 
on conceptual modeling. See (Steimann 2000) for a comprehensive litera-
ture survey. Pernici (1990) presented one of the first proposals of represen-
tation by surrogates. Cabot and Raventós (2006) analyzed the representa-
tion of roles in UML and proposed using a stereotype with attributes to 
define adopted properties. 

Goldstein and Storey (1994) gave the first description of materialization. 
Pirotte et al. (1994) extended and defined the semantics of materialization 
in terms of other conceptual modeling constructs. Dahchour et al. (2002) 
presented an implementation of materialization.    

7.8 Exercises 

7.1 Consider a domain of auctions in which there are articles, and lots of 
articles sold together. A lot consists of one or more articles. An article 
cannot be in two or more lots at the same time. The creation of a new lot 
includes the definition of the articles that it comprises. There may be arti-
cles that are not included in any lot. The composition of lots is immutable. 
Lots cease to exist at some time, but their articles may remain in the sys-
tem and later become part of other lots. Design the conceptual schema of 
this domain in UML. 
 
7.2 Local sharing and local dependency are two orthogonal aspects of Is-
PartOf realizations. Four combinations are possible. Give an example in 
UML of each of them.  

 
7.3 Design a UML schema that represents the following knowledge about 
a flight management domain. Identify the associations in the schema that 
are realizations of the generic relationship types studied in this chapter. An 
airplane has an identifier, a name, and a type. Each airplane is owned by an 
airline. An airplane type has a name, and a number of seats. A flight is op-
erated by an airline. Each flight has a code and one or more flight legs. A 
flight leg is a nonstop portion of a flight. For example, a Paris–Tokyo 
flight might consist of two flight legs: Paris–Frankfurt and Frankfurt–
Tokyo. A flight leg leaves and arrives at an airport and has a scheduled de-
parture time and arrival time. A flight leg is served by an airplane of a spe-
cific type. An airport has a name and a code and is located in a city. A 
flight instance is an occurrence of a flight on a particular date. A leg in-
stance is an occurrence of a flight leg, served by a specific airplane. Two 
leg instances of the same flight may be served by different airplanes. The 
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departure and arrival times of a leg instance may differ from the scheduled 
ones. Each leg instance has a crew, which consists of a pilot, one copilot or 
none, and one or more flight attendants. Each crew member has an identi-
fier and a name. A person may be a crew member of several leg instances 
(whose schedules do not overlap, obviously). 
 
7.4 Although we have focused on four generic relationship types in this 
chapter, others are possible. Identify a new one that you think might be 
useful in a given project. For this new generic relationship type, provide 

• its name; 
• a description; 
• several examples of realizations; 
• the properties of the type and of its realizations; 
• its representation in UML. 

 
 
 



8 Derived Types 

In this chapter we show that entity and relationship types may be base, de-
rived, or hybrid (Sect. 8.1). The instances of base types need to be explic-
itly represented in an information base, while those of derived and hybrid 
types may be inferred by an information system, using derivation rules. 
Derivation rules are domain knowledge that an information system needs 
in order to derive certain facts; this knowledge must therefore be described 
in the conceptual schema. Section 8.2 describes the logical and the UML 
representations of derived and hybrid types and their derivation rules. In 
general, derivation rules are very diverse, although certain kinds appear 
very often. Section 8.3 describes some of these. Section 8.4 shows that the 
derivation rules of constant relationships require special interpretation. 
Section 8.5 explains how to define a particular kind of hybrid type in 
UML. Derived types add complexity to a schema, so their definition must 
be justified. Section 8.6 deals with the justification of derived types. 

Formal definition of derivation rules requires the use of a formal lan-
guage. In UML, the preferred language is OCL, and this is the language 
that will be used throughout this book. We assume that the reader is famil-
iar with the basics of OCL. In Section 8.7 we give references to introduc-
tory and detailed texts on OCL.  

8.1 Derivability 

The derivability of an entity or relationship type means the way in which 
the information system knows the population of that type at any instant. 
According to its derivability, an entity or relationship type may be base, 
derived, or hybrid. These types are studied in the following sections.  

8.1.1 Base Types 

An entity or relationship type is base when its instances need to be explic-
itly represented in the information base, otherwise the information system 
could not know them.  
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For example, assume the entity type Book. In most systems, Book will 
be base because the information system knows its instances only if they 
are explicitly represented in the information base. Similarly, the relation-
ship type Reads (reader:Person, Book) is base, for the same reason: the in-
formation system can only know who is reading which books if this is ex-
plicitly represented in the information base. 

8.1.2 Derived Types 

An entity or relationship type is derived when its instances need not be ex-
plicitly represented in the information base, because the information sys-
tem may derive (i.e. infer or calculate) them at any time. For each derived 
type, there is a derivation rule, which is an expression that defines the nec-
essary and sufficient conditions for an entity or a relationship to be an in-
stance of the given type. It is assumed that the information system has an 
inference mechanism, by means of which it can derive the population of a 
derived type from its derivation rule and the population of other types. 
Each entity or relationship type whose population can be derived from that 
of other types should be defined as derived. 

An example of a derived entity type might be Quadrilateral. Its deriva-
tion rule, written in natural language, would be “A quadrilateral is a poly-
gon with four sides”. An information system may derive the population of 
Quadrilateral from: 

• The derivation rule indicated. 
• The population of Polygon, which is explicitly represented in the infor-

mation base. 
• The population of the relationship type HasSides (Polygon, 

sides:Natural), which is also explicitly represented in the information 
base. 

An example of a derived relationship type might be Grandparent 
(grandchild:Person, grandparent:Person). Its derivation rule, written in 
natural language, would be “A person gc is a grandchild of person gp if gc 
is a child of a gp’s child”. An information system may derive the popula-
tion of Grandparent from: 

• The derivation rule indicated. 
• The population of Parent (child:Person, parent:Person), which is ex-

plicitly represented in the information base. 
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8.1.3 Hybrid Types 

An entity or relationship type is hybrid if several of its instances need to be 
explicitly represented in the information base but the others can be de-
rived. The derived instances are defined by a derivation rule, which in this 
case is a partial rule, since it defines only part of the population of that 
type. 

Let us assume that there are entity types Document and Book, and that 
Book is base. If books are documents, but there are documents that are not 
books (such as reports or theses), then Document is hybrid. The informa-
tion system knows the complete population of Document from: 

• The partial derivation rule “Books are documents”. 
• The population of Book, which is explicitly represented in the informa-

tion base. 
• The population of Document that is explicitly represented in the infor-

mation base. 

In the domain of a company, a simple example of a hybrid relationship 
type might be MemberOfCommittee (Person, Committee). Let us assume 
that employees may be members of committees, but that there is also a rule 
stating that the company’s directors are members of all existing commit-
tees. The information system knows the complete population of Mem-
berOfCommittee from: 

• The partial derivation rule “Directors are members of all existing com-
mittees”. 

• The instances of Director and Committee, which are explicitly repre-
sented in the information base. 

• The instances of MemberOfCommittee that are explicitly represented in 
the information base. 

8.1.4 Transformation of Hybrid Types into Derived Types 

Any hybrid entity type can easily be transformed into an equivalent de-
rived type. Let E be a hybrid entity type with a partial derivation rule DR. 
E can be transformed into a derived type in the following two steps: 

1. Define a new base type Eext such that its population at any time is the 
set of entities of type E that is explicitly represented in the informa-
tion base. 

2. Define that E is derived from the rule “An entity e is an instance of E 
if e satisfies the derivation rule DR or e is an instance of Eext”. 
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Let us apply this transformation to the hybrid entity type Document. 

1. We define a new base entity type GeneralDocument (or any other 
name that is considered appropriate to the domain). Documents that 
are not books are instances of this type. 

2. We now define Document as a derived type using the derivation rule 
“An instance of Document is an instance of GeneralDocument or an 
instance of Book”. 

The above transformation can also be applied to relationship types. For 
example, the application to MemberOfCommittee (Person, Committee) 
would be as follows: 

1. We define a new base relationship type AssignedMember (Person, 
Committee) (or any other name that may be more appropriate). The 
instances of AssignedMember are the explicit assignments of persons 
to committees. 

2. We now define MemberOfCommittee as a derived type using the deri-
vation rule “A person p is a member of committee c if p is a director 
or p is an assigned member of c”. 

As we have seen, hybrid types can be transformed into derived types. 
However, there is a price to pay, in the sense that a new, auxiliary type 
(Eext) must be defined. Nevertheless, the transformation is important be-
cause most conceptual modeling languages (including UML) do not allow 
hybrid types, at least in the general case.  

8.1.5 Design of Derivability 

Derivability is not an intrinsic characteristic of an entity or relationship 
type. A type may be base in one information system and derived in an-
other. For example, the entity type Quadrilateral may be derived in a sys-
tem dealing with polygons and their number of sides, while it is likely to 
be base in a system dealing only with quadrilaterals.  

In a given conceptual schema, we may have one or more types whose 
derivability is not predetermined. The typical example is that of the entity 
types Person, Man, and Woman and the attribute Sex (Person, Sex), to 
which there are at least two possible approaches: 

• To define Person and Sex (Person, Sex) as base, and Man and Woman 
as derived. 

• To define Man and Woman as base, and Person and Sex (Person, Sex) 
as derived. 
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There are no clear guidelines for designing derivability. In principle, it 
would seem that an important criterion should be user convenience. Deriv-
ability has an impact on the information that users have to provide to the 
system, and it is important to keep this information to a minimum or to re-
quire that it is expressed in the form that is most natural to users. The ap-
plication of this criterion to the above example means choosing between 
the following options: 

• If Person and Sex are base types, users need to inform the system of the 
existing persons and their sex attribute. Man and Woman can then be de-
rived types.  

• If Man and Woman are base types, users need to inform the system of 
the existing men and women. Person and sex can then be derived types.  

8.2 Representation in an Information System 

An information system needs to know the derivability of the entity and re-
lationship types defined in the schema and, for derived and hybrid types, 
their corresponding derivation rules. Both the derivability and the deriva-
tion rules are defined in the schema. The form of representation depends 
on the conceptual modeling language used. In this section, we study the 
logical and UML representations. 

8.2.1 Logical Representation 

In the logical representation: 

• The base types are those that do not have derivation rules. The system 
provides mechanisms by means of which users can inform the system of 
instances of these types. 

• The derived types are those which have derivation rules. Users cannot 
tell the system that there are explicit instances of these types. 

• The hybrid types also have derivation rules, but in this case the system 
provides mechanisms by means of which users can inform the system of 
additional instances of these types. 

A derivation rule of a derived entity type E is a closed formula 

E(e) ↔ φ(e) 
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where φ(e) is a subformula with a free variable e. The rule states that e is 
an instance of E if, and only if, the subformula φ(e) holds. For example, 
the derivation rule of Quadrilateral is 

 Quadrilateral(e) ↔ (Polygon(e) ∧ HasSides(e,4)) 

The partial derivation rule of a hybrid entity type E is a closed formula: 

φ(e) → E(e) 

where φ(e) is, as before, a subformula with a free variable e. Note that an 
entity e may be an instance of E even if the subformula φ(e) does not hold. 
For example, the partial derivation rule of Document is 

 Book(e) → Document(e) 

Similarly, the derivation rule of a derived relationship type R is a closed 
formula 

R(e1, …, en) ↔ φ(e1, …, en) 

where φ(e1, …, en) is a subformula with free variables e1, …, en. The rule 
states that e1, …, en is an instance of R if, and only if, the subformula φ(e1, 
…, en) holds. For example, the derivation rule of Grandparent is 

 Grandparent(gc,gp) ↔ (Parent(gc,p) ∧ Parent(p,gp)) 

Finally, the partial derivation rule of a hybrid relationship type R is a 
closed formula 

φ(e1, …, en) → R(e1, …, en) 

where φ(e1, …, en) is a subformula with free variables e1, …, en. The rule 
states that e1, …, en is an instance of R if the subformula φ(e1, …, en) holds. 
For example, the partial derivation rule of MemberOfCommittee is 

 (Director(p) ∧ Committee(c)) → MemberOfCommittee(p,c) 

8.2.2 Representation in UML 

In general, UML allows derived attributes and associations to be defined. 
Derived attributes are represented graphically by placing a slash (/) in front 
of the name. The derivation rules are usually specified using the OCL lan-
guage. The specification has the general form 
context EntityType::attribute:Type 

derive: an OCL expression  
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The context clause states the derived attribute whose derivation rule is 
specified by the expression given in the derive clause. This means that the 
evaluation of the expression for an instance of the entity type gives the 
value of the attribute for that instance. The value must conform to the type 
and multiplicity of the attribute. If the maximum multiplicity of the attrib-
ute is greater than one, the result of the expression is a set. If the minimum 
multiplicity is zero, the result may be the empty set. If the multiplicity is 
0..1, the result may be a value or the empty set.  

In the example in Fig. 8.1, Product has the derived attribute quantity-
Sold, which is defined as the sum of the quantities of all sales of the prod-
uct. The derivation rule is 
context Product::quantitySold:Natural 

derive: sale.quantity->sum() 

Derived associations are represented graphically by a slash either in 
front of the name of the association, in place of the name if no name is 
shown, or in front of the role names. Figure 8.1 shows three examples: the 
associations frequentBuyer–favorite, YearlySales, and bestOfTheYear–
year.  

Similarly to attributes, the derivation rules of associations are usually 
specified using the OCL language. The general form of the specification of 
a derived binary association is 
context EntityType::Role:Type 

derive: an OCL expression 
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The context clause states one of the two roles of the association whose 
derivation rule is specified by the expression given in the derive clause. 
This means that the evaluation of the expression for an instance of the en-
tity type provides the entities related to it in the role indicated. The result 
must conform to the type and multiplicity of the role. If the maximum mul-
tiplicity of the role is greater than one, the result of the expression is a set. 
If the minimum multiplicity is zero, the result may be the empty set. If the 
multiplicity is 0..1, the result may be an entity or the empty set. 

The derivation rule of the association frequentBuyer–favorite shown in 
Fig. 8.1 might be 
context Customer::favorite:Product 

derive: -- A product is one of self’s favorites  
        -- if self has bought more than 1000 units of it. 
  Product.allInstances()->select(p:Product|p.sale->  

      select(s:Sale|s.customer=self).quantity->sum() > 1000)  

Note that the derivation rule can be specified for either of the two roles. 
In the above example, an alternative option might be 
context Product::frequentBuyer:Customer 

derive: -- A frequent buyer has bought 
        -- more than 1000 units of self. 
  Customer.allInstances()->select(c:Customer|c.sale->  
    select(s:Sale|s.product=self).quantity->sum() > 1000)  

From a conceptual point of view, the two options are equivalent. The 
conceptual modeler may choose the option that he considers more natural 
or easier to specify.  

8.2.3 Representation of Derivation Rules by Operations 

In object-oriented languages such as UML, derivation rules may be repre-
sented by operations. One of the advantages of this form of representation 
is that it can be used for any kind of derived entity or relationship type. In 
general, in this book we use operations only when the standard representa-
tion is not possible or when using operations provides better representa-
tions of the derivation rules. 

The idea is to associate each derived element with a query operation, 
called the defining operation. Query operations (also called query func-
tions) return a value but do not alter the information base. In UML, the 
value is formally specified by an OCL expression defined in the body 
clause. The specification of the defining operation is the derivation rule. 
The signature of the defining operation and the details of its specification 
depend on the derived element, as we explain below. 
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For an attribute A of entity type E with values of type E1, the defining 
operation is an instance operation in E without arguments: 
context E::A():[E

1
|Set(E

1
)] 

where the result type is E1 or Set (E1), depending on whether A is single-
valued or multivalued, respectively. The result of the operation is the value 
of the attribute A for the corresponding instance entity.  

For example, the defining operation corresponding to the attribute quan-
titySold of Product mentioned above is 
context Product::quantitySold():Natural 

body: sale.quantity->sum() 

Note that, for attributes, the body expression is the same as that of derive.  
The defining operations are purely conceptual; they may or may not be 

part of the implementation. The only purpose of a defining operation is to 
specify the corresponding derivation rule. Normally, these operations are 
not shown in the class diagrams of conceptual schemas.  

For a binary relationship type R(p1:E1, p2:E2), the defining operation 
may take one of the following four forms: 

• An instance operation of E1 with signature p2(): [E2 | Set (E2)]. The result 
is E2 or Set (E2), depending on the cardinalities of R. The result of the 
operation is the instance, or the set of instances, of E2 related to an in-
stance of E1.  

• An instance operation of E2 with signature p1(): [E1 | Set (E1)]. This is 
similar to the above operation. 

• An instance operation of E1 with signature p1(p2:E2): Boolean. The 
result is true if there is a relationship of type R between self and the 
instance given in the parameter, and false otherwise.  

• An instance operation of E2 with signature p2(e1:E1): Boolean. This is 
similar to the above operation. 

From a conceptual point of view, the four options are equivalent. The 
place (E1 or E2) in which the operation is defined does not imply navigabil-
ity. Conceptually, associations are navigable in all directions. The concep-
tual modeler may choose the place that he considers more natural or easier 
to specify.  

For example, a specification of the defining operation of the association 
frequentBuyer–favorite defined in Customer might be 
context Customer::favorite():Set(Product) 

body:  
  Product.allInstances()->select(p:Product|p.sale-> 
    select(s:Sale|s.customer=self).quantity->sum() > 1000)  

Similarly, a specification of the defining operation in Product might be 
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context Product::frequentBuyer():Set(Customer) 
body:  
  Customer.allInstances()->select(c:Customer|c.sale-> 
    select(s:Sale|s.product=self).quantity->sum() > 1000)  

Note that when the derivation rule of a binary association is specified in 
this way, the body expression is the same as that of derive.  

An example illustrating the use of defining operations whose result indi-
cates whether or not a relationship exists between self and an instance of 
the other role is the bestOfTheYear–year association shown in Fig. 8.1. Let 
us assume that customer c is the best in year y if c is the customer with the 
greatest total quantity sold in y. A specification might be 
context Customer::bestOfTheYear(y:Year):Boolean 

body:  
  let customers:Sequence(Customer) = 
     Customer.allInstances()->sortedBy(sale->  
           select(date.year = y).quantity -> sum()) 
  in customers->notEmpty() and self=customers->last() 

The derivation rule of a derived n-ary relationship type can also be 
specified by means of an operation. Let R(p1:E1,…, pn:En) be a derived re-
lationship type, with n > 2. We can host the defining operation in any of 
the n participant entity types, and the result type may be any of the other n 
- 1 entity types. Therefore, we may choose among n2 defining operations, 
each of which is an instance operation of a certain Ei, i ∈{1, …, n} and has 
either n - 2 arguments and a return result of type Ej, j ≠ i, j ∈{1, …, n}, or 
n - 1 arguments and a return result of type Boolean. 

In the first case, the general form of the instance operation for i = 1 and j 
= 2 is 
context E

1
::opname(p

3
:E

3
,…,p

n
:E

n
):[E

2
|Set(E

2
)]  

where the result type is E2 or Set (E2), depending on the cardinalities of R. 
The result of the operation is the set of instances of E2 related to an in-
stance of E1 and to the instances of E3, …, En given in the arguments.  

In the second case, the general form of the instance operation for i = 1 is 
context E

1
::opname(p

2
:E

2
,p

3
:E

3
,…,p

n
:E

n
):Boolean 

The result is true if there is a relationship of type R between self and the 
instances given in the parameters, and false otherwise.  

It is difficult to define a general convention regarding the name opname 
of the operation. In many cases, the name of a role may be appropriate, but 
in other cases other names may be considered more appropriate. If neces-
sary, the correspondence between the derived association and its defining 
operation can be documented with a comment. 

For example, consider the derived quaternary association YearlySales 
shown in Fig. 8.1. An instance of this association gives the quantity of 
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product p bought by customer c in year y, provided that c has made at least 
one sale of p during y. If we host the defining operation in Customer, the 
derivation rule in OCL is 
context Customer::quantity(p:Product,y:Year):Natural 

body: let sales:Set(Sale) =  
   sale->select(product = p and date.year = y) 
      in  
      if sales->notEmpty() then sales.quantity->sum() 
      else Set{} 
      endif 

An alternative option might be to host the operation in Product. We 
would not normally host defining operations in data types (such as Year or 
Natural in the example above). 

The derivation rule of a derived entity type E can also be specified by 
means of an operation. Here, the defining operation is a class operation of 
E without arguments, whose intended result is the set of instances of E. 
The OCL includes, for each entity type E, the predefined class operation of 
E, 
context E::allInstances():Set(E) 

which gives the set of all instances of E and of its subtypes at the time the 
operation is evaluated. For base entity types, this operation need not be 
specified, because its meaning is predefined. For derived entity types, it 
could be used (although it is not standard) as the defining operation of the 
corresponding derivation rule.  

For example, consider the derived entity type Best-Seller shown in Fig. 
8.1. Let us assume that a product is a best-seller if the quantity sold is 
greater than 10, 000 units. The derivation rule could be 
context Best-Seller::allInstances():Set(Best-Seller) 
  body: Product.allInstances()->select(quantitySold > 10000) 

8.3 Particular Kinds of Derived Type 

In general, derivation rules are very diverse, although certain kinds appear 
very often. In the following sections, we study several of the most popular 
derivation rules. 

8.3.1 Derived by Union 

An entity type E is derived by union of E1, ..., En (n ≥ 1) if at any time its 
population is the union of the populations of E1, ..., En. A classic example 
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is that of Person. Many systems define Person as derived by union of Man 
and Woman. 

In UML, entity types derived by union are semantically equivalent to 
abstract entity types: the population of an abstract entity type is the union 
of the population of its subtypes. Thus, we can state that E is derived by 
union of E1, ..., En by defining E as abstract and E1, ..., En as subtypes of E. 
The name of an abstract entity type is shown in italic. An example is 
shown in Fig. 8.2. 

A relationship type R is derived by union of R1, ..., Rn (n ≥ 1) if, at any 
time, its population is the union of the populations of R1, ..., Rn. For exam-
ple, if a person is said to participate in a project by either working on it or 
acting as an advisor, then 

 Participates (participant:Person, project:Project) 

is derived by union of 

 Works (worker:Person, job:Project) 
 Advises (advisor:Person, subject:Project) 

Similarly to what occurs in the case of entity types, in UML we can 
state that R is derived by union of R1, ..., Rn by defining R as abstract and 
R1, ..., Rn as subtypes of R. The name of an abstract relationship type is 
shown in italic. An example is shown in Fig. 8.2. 

UML offers an alternative representation of binary associations derived 
by union, which may sometimes be more practical than the one just de-
scribed. In this representation, we define that an association A is derived 
by union of the associations A1, ..., An using a property string {union} near 
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to a role name r of A and a property string {subsets <r>} near to the corre-
sponding role name of A1, ..., An. 

The two representations are semantically equivalent; instead of defining 
A as abstract, we define that one of its roles r is derived by union of the 
roles that are declared as its subsets. Figure 8.3 shows the example in Fig. 
8.2 using this notation. One of the advantages of this representation is that 
it can also be applied to attributes. 

8.3.2 Derived by Specialization 

An entity type E is derived by specialization of E1, ..., En (n ≥ 1) when its 
derivation rule defines that e is an instance of E if e is an instance of E1, ..., 
En and (optionally, if n ≥ 2) if e satisfies a specialization condition. If E is 
derived by specialization of E1, ..., En, then E is a subtype of E1, ..., En. 

When n = 1, we say that E is derived by simple specialization of E1. In 
this case there must be a specialization condition; otherwise, E and E1 
would be redundant. The instances of E are those of E1 that satisfy the spe-
cialization condition. For example, if a quadrilateral is defined as a poly-
gon that has four sides, then Quadrilateral is derived by simple specializa-
tion of Polygon, with the specialization condition “has four sides”. The 
formal derivation rule is 
context Quadrilateral::allInstances():Set(Quadrilateral) 
  body: Polygon.allInstances()->select(sides = 4) 

Most derived entity types are derived by simple specialization. Another 
example is Best-Seller, shown in Fig. 8.1. 

When n > 1, we say that E is derived by multiple specialization of E1, ..., 
En. In this case, the specialization condition is optional. If there is one, then 
the instances of E at any time are the instances of E1, ..., En at that time that 
satisfy the specialization condition. An example might be the entity type 
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AdultEmployeeStudent if we assume that its instances are those individuals 
that are employees, students, and over 18 years old. The derivation rule is 
context AdultEmployeeStudent::  
          allInstances():Set(AdultEmployeeStudent) 
  body: Person.allInstances->select  
    (p:Person|p.oclIsTypeOf(Student) and  
             p.oclIsTypeOf(Employee) and p.age > 18) 

In this example, the specialization condition is “over 18 years old”. 
When E is derived by multiple specialization of E1, …, En but without a 

specialization condition, then we say that E is derived by the intersection 
of E1, ..., En. In this case, the population of E at any time is the intersection 
of the populations of E1, ..., En at that time. For example, Square is derived 
by the intersection of Rectangle and Rhombus. Its formal derivation rule is 
context Square::allInstances():Set(Square) 
  body: Rectangle.allInstances()-> 
          intersection(Rhombus.allInstances())  

Relationship types can also be derived by specialization. The definitions 
are similar to those of entity types. Figure 8.4 shows an example. An em-
ployee works full-time on a project if he works only on that particular pro-
ject. WorksFull-Time is derived by simple specialization of Works, with 
the specialization condition “the employee works only on this project”. 
The formal derivation rule of WorksFull-Time is 
context Employee::full-timeProject:Project 
  derive: if project -> size() = 1 then project->any(true) 
          else Set{}  
          endif 

Most derived relationship types are derived by simple specialization. 

8.3.3 Derived by Exclusion 

An entity type E is derived by exclusion if E is derived by simple speciali-
zation of E1 and the specialization condition is that the instances of E are 
not instances of E2, ..., En, with n > 1. 
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For example, if an instance of UnemployedPerson is a Person who is not 
an Employee, then UnemployedPerson is derived by exclusion. The formal 
derivation rule is 
context UnemployedPerson::allInstances(): 
          Set(UnemployedPerson) 
  body: Person.allInstances() - Employee.allInstances() 

Relationship types may also be derived by exclusion. For example, as-
sume the following types: 

Actor (Movie, Actor) 
MainActor (Movie, mainActor:Actor) 
SupportingActor (Movie, supportingActor:Actor)  

If a supporting actor in a movie is an actor in that movie who is not a main 
actor, then SupportingActor is derived by exclusion. The formal derivation 
rule is 
context Movie::supportingActor():Actor 
  derive: actor - mainActor  

8.3.4 Derived by Participation 

Consider the relationship type R(p1:E1, …, pn:En) and one of its partici-
pants pi:Ei. Let us assume that the participation of pi in R is partial. This 
means that there may be instances of Ei that participate in a given relation-
ship of type R and others that do not. E is an entity type derived by partici-
pation in R if its population is defined as the instances of Ei that participate 
in some relationship of type R. An entity type derived by participation is 
also derived by simple specialization. Observe that relationship types can-
not be derived in this way.  

For example, consider the association Manages shown in Fig. 8.5 and 
suppose that a manager is an employee that manages a department. Man-
ager is therefore an entity type derived by participation in Manages. The 
formal derivation rule is 
context Manager::allInstances():Set(Manager) 
  body: Employee.allInstances()->  
          select(department->notEmpty()) 

It may be useful to compare the representation shown in Fig. 8.5 with 
that in Fig. 8.6, in which Manager is a base entity type and a participant in 
Manages. The knowledge represented in Fig. 8.5 (including the derivation 
rule) is the same as that in Fig. 8.6. In principle, the representation shown 
in Fig. 8.6 is better, because it states clearly that only managers can man-
age departments and does not require a derivation rule. However, changes 
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to the information base become more complex. Consider, for example, a 
change of manager in a particular department. In the schema shown in Fig. 
8.5, the change implies 

• removing the Manages link between the current manager and the de-
partment, and 

• adding a Manages link between the new manager and the department. 

while in the schema in Fig. 8.6 the change implies 

• removing the current department manager from Manager, 
• removing the Manages link between the current manager and the de-

partment, 
• adding the new manager to Manager, and 
• adding a Manages link between the new manager and the department. 

Clearly, the conceptual modeler must weigh up the benefits of a simple 
structural schema against those of a simple behavioral schema. 

Fig. 8.6. An alternative representation of Manager and Manages
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8.3.5 Transitive Closure 

In mathematics, the transitive closure of a binary relation R in a set X is the 
smallest transitive relation in X that contains R. In conceptual modeling, 
we often find binary associations that are the transitive closure of others. 
Such associations are derived. 

Figure 8.7 shows an example of this. The association ancestor–
descendant is the transitive closure of parent–child. The instances of an-
cestor–descendant are those of parent–child and those that can be obtained 
from them by transitivity. The formal specification is 
context Person::descendant:Person 
  derive: self.child->union(self.child.descendant)->asSet()  

8.4 Derivation Rules for Constant Relationship Types 

Like any other type, constant relationship types can be derived. However, 
their derivation rules require special interpretation. Consider the example 
in Fig. 8.8. A sale consists of a set of sale lines. Each sale line is for a 
given product. The attributes of a sale line are the amount sold, the unit 
price, and the line price. All of them are constant with respect to the sale 
line. In principle, it would seem that the unit price and the line price are 
derived. The derivation rule of the unit price might be as simple as 
context SaleLine::unitPrice:Money 
  derive: product.unitPrice  
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However, this derivation rule is incorrect because the unit price of the 
product sold may change after the sale line has been created, but this does 
not imply that the unit prices of the sale lines of that product must be 
changed. The correct form of the rule must define that the unit price of a 
sale line is determined by its product when the sale line is created.  

A similar example, which is also shown in Fig. 8.8, is that of the sale–
seller association, which is constant with respect to sale. If the seller of a 
sale is defined as the salesperson assigned to the customer of that sale, the 
derivation rule might be 
context Sale::seller:SalesPerson 
  derive: customer.salesPerson  

However, as in the previous case, this derivation rule is incorrect because 
the salesperson assigned to a customer may change after the sale has been 
created, but this does not imply that the seller of the sales to a given cus-
tomer must be changed. The correct form of the rule must define that the 
seller of a sale is determined by the customer of the sale when the sale is 
created.  

These problems can be solved by applying a special interpretation to the 
derivation rules of constant relationship types. The idea is to adhere to the 
semantics of the constant constraint. As outlined in Chapter 3, if R(p1:E1, 
…, pi:Ei, …, pn:En) is constant with respect to pi, the set of instances of R in 
which an instance ei of Ei participates in the role pi is determined when ei is 
created and remains fixed during the lifetime of ei. Therefore, it is natural 
to assume that, if R is derived, R(e1 ,…, ei, …, en) holds at a given time if 
R(e1, …, ei, …, en) satisfied the derivation rule when ei was created.  

According to this interpretation, the two derivation rules above are cor-
rect. The unitPrice attribute of a SaleLine exists when the sale line is cre-

Fig. 8.8. Examples of derived constant attributes and associations
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ated and it remains the same until the sale line ceases to exist. Evaluating 
the derivation rule at the time of creation gives the value of the attribute. 
Similarly, an instance of the association sale–seller starts to exist when the 
sale is created, and it continues to exist until the sale ceases to exist (if this 
occurs). The participants in the association are given by the evaluation of 
the derivation rule when the sale is created. 

Figure 8.8 also shows the derived constant attribute linePrice of 
SaleLine. In this case, the derivation rule always gives the same value1: 
context SaleLine::linePrice:Money 
  derive: quantity * unitPrice 

Note that in Fig. 8.8, the derived attribute totalPrice of Sale is not con-
stant. It is assumed that sale lines can be added to and removed from a sale 
at any time. Therefore, this attribute is time-varying and its value is de-
fined by the following derivation rule: 
context Sale::totalPrice:Money 
  derive: saleLine.linePrice->sum() 

8.5 Hybrid Types in UML 

Object-oriented languages (including UML) provide limited support for 
defining hybrid types. The general solution is then to transform these types 
into their derived equivalents. Unfortunately, as explained in Sect. 8.1.4, 
this transformation requires the definition of a new type, which may be 
considered artificial in many cases. 

However, for a particular kind of hybrid type, there is a simple solution. 
Recall that in general a hybrid entity type E has a partial derivation rule 

φ(e) → E(e) 

This means that the population of E is given by the union of its explicitly 
given instances and those that satisfy φ(e). 

This particular kind of hybrid type occurs when the partial derivation 
rule takes the form 

E1(e) ∨ … ∨ En(e) → E(e) 

where E1, …, En are entity types. That is, the population of E is given by 
the union of its explicitly given instances and those of E1, …, En. To avoid 

                                                      
1 In this book, we assume that Money and similar types support the + and the * op-

erations. 
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circularity, none of the E1, …, En can be defined as being derived by spe-
cialization of E. 

In object-oriented languages (including UML), the definition of this par-
ticular kind of hybrid type is very simple: define E as nonderived and de-
fine E1, …, En as subtypes of E. Figure 8.9 shows an example in UML. 
Person is a hybrid type with the partial derivation rule 

 Employee(e) → Person(e) 

The population of Person is the union of the set of employees and the set 
of instances explicitly classified as persons. 

The same reasoning applies to hybrid relationship types. In the example 
in Fig. 8.9, HasWorked is a hybrid type with the partial derivation rule 

 Works(e,c) → HasWorked(e,c) 

The population of HasWorked is the union of Works and the set of rela-
tionships explicitly classified as HasWorked. 

In Chap. 10, we describe an additional construct that can be used in 
UML to define another particular kind of hybrid relationship type. 

8.6 Justification for Derived Types 

The complexity of a conceptual schema depends on the number of entity 
and relationship types that it contains. Therefore, if the schema defines a 
type, there must be an agreed justification for it. Types without justifica-
tion should not be included in a schema. The justification for base types 
must be that they are required by the functions of the information system, 

HasWorked

Works

Employee

Person

Company
* *

* 1

Fig. 8.9. Person and HasWorked are hybrid types
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however the justification for derived types is not as clear. Below, we de-
scribe several of these justifications. 

If we define a derived type, we can use it like a base type in any part of 
the schema and ignore the details of its derivation rule. If we do not define 
a derived type but need to refer to its instances in a given part of the 
schema, we have to write its derivation rule. Consequently, there is a trade-
off between adding a derived type to the schema (including its derivation 
rule) and writing the derivation rule whenever it is needed.  

For example, consider the schema fragment shown in Fig. 8.10. A prod-
uct may be supplied by several suppliers. Each supply has a unit cost and a 
delivery time. Assume now that, in several parts of the schema, we need to 
know who is the best supplier of a given product. For instance, we may 
need this information when we have to issue purchase orders, when we 
have to specify an integrity constraint like “a supplier cannot be the best 
supplier of all products”, or when we have to answer queries that request 
this information. In this scenario, we have two options. One is shown in 
Fig. 8.10 and consists in defining a derived association product–
bestSupplier and its derivation rule. From this point on, we can use this as-
sociation as a base type. If the best supplier of a product is the one that 
supplies it at the minimum cost, the formal derivation rule is 
context Product::bestSupplier:Supplier 
  derive: supply -> sortedBy(unitCost) -> first().supplier  

The second option simply consists in writing an expression such as 
  aProduct.supply->sortedBy(unitCost)->first().supplier  

whenever we need to know the best supplier of aProduct. 
There are two additional arguments in favor of defining derived types in 

a schema. The first is that there is a unique definition of the derivation 
rule, which is always (implicitly) used in the same way. The second is re-

Fig. 8.10. Example of derived association (product-bestSupplier)
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lated to schema evolution. We may need to change the definition of the 
best supplier to take into account the delivery time of the supply, for ex-
ample. The evolution of derivation rules is much easier when they are de-
fined in a single place.  

8.7 Bibliographical Notes 

Derived types and their rules have been considered fundamental compo-
nents of the conceptual schemas of information systems since the early 
1980s. See, for example, (Hull and King 1987). Derivation rules are some-
times classified as a type of business rule (Business Rules Group 2000). 

In the field of deductive databases, the distinction between base, de-
rived, and hybrid types and their logical representation have been well 
known since the early work of Nicolas and Gallaire (1978). In the same 
field, Bancilhon and Ramakrishnan (1986) described a procedure for trans-
forming hybrid types into derived types. In conceptual modeling the dis-
tinction is well explained in (Martin and Odell 1995, Chap. 6). 

Many conceptual modeling languages provide specific constructs for de-
fining derived types and derivation rules. The early languages include 
DAPLEX (Shipman 1981), which provides a detailed justification for de-
rived types, SDM (Hammer and McLeod 1981), which includes a detailed 
analysis of the kinds of derivation and provides constructs for defining 
them, and CIAM (Gustaffsson et al. 1982), which places a strong emphasis 
on derived types and the temporal perspective. Later languages include: 

• The family of languages stemming from KL-ONE (see an overview in 
Brachman and Schmolze 1985) called Description Logics, which pro-
vide a specific formal syntax for defining derived entity and relationship 
types and strong reasoning capabilities (Bergamaschi and Sartori 1992, 
Borgida 1995).  

• Chimera, as described by Ceri and Fraternali (1997), which includes de-
ductive rules for data derivation and a set of mappings for the imple-
mentation of these rules as triggers or views in database systems.  

• ORM, as described by Halpin (2001), which allows formal and informal 
versions of derivation rules.  

• OO-Method, presented by Pastor et al. (2001).  

The use of operations for the specification of derivation rules was pre-
sented in Olivé (2003a). 

The main recognized justification for derived entity types is their par-
ticipation in a given role of base relationship types. Among the texts that 
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adopt this justification are (Nijssen and Halpin 1989, p. 130), (Yourdon 
1993, p. 61) and (Parsons 1996). Other justifications were given by Ship-
man (1981) and Schreiber et al. (2000, p. 98). 

The current version of the OCL specification is the document (OMG 
2005b). Chapter 7 of that document is an informative introduction to the 
language. (Warmer and Kleppe 2003) is a practical guide to OCL. 

8.8 Exercises 

8.1 Consider the schema in Fig. 8.11. An account is a materialization of an 
account type. In principle, all accounts of the same type have the same in-
terest rate. However, there are exceptions: a bank may give an account an 
exceptional interest rate. The numberOfExceptions attribute gives the 
number of accounts of a given type that have exceptional interest rates 
(which may be zero). If the interest rate is not exceptional, the interest rate 
of an account is that of its type; otherwise, it is the exceptional rate. Define 
in OCL the derivation rules of the two derived attributes. 

 
8.2 Consider an information system whose domain is a set of people and 
their family relationships. Assume that the schema includes the base entity 
type Person and the relationship types 

Sex (Person, Sex) 
Parent (child:Person, parent:Person) 

Represent this schema in UML with the derived relationship types 

Grandparent (grandchild:Person, grandparent:Person) 
Sibling (Person, sibling:Person) 
Uncle (Person, uncle:Person) 
Aunt (Person, aunt:Person) 
HasNumberOfChildren (Person, Natural) 

Define the derivation rules of the above types in OCL. 

Fig. 8.11. Example with two derived attributes
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8.3 Assume that in the domain of a school we have the entity type Student, 
the data type Mark, and the relationship type Average (Student, Mark) with 
the pattern sentence 

The average mark of the exams taken by student <Student> is 
<Mark> 

Furthermore, assume that the school wants to define a new entity type 
named GoodStudent. Students will be an instance of this type if their aver-
age mark is higher than goodMark (a value of Mark). However, in particu-
lar cases, the school can designate students as good even if their average 
mark is less than goodMark. Therefore GoodStudent is hybrid. 

1. Transform GoodStudent into a derived type. Explain its derivation 
rule. 

2. Represent the resulting schema in UML and define the derivation rule 
of GoodStudent in OCL.  

 
8.4 Change the derivation rule of the product–bestSupplier association 
shown in Fig. 8.10, assuming that if, for a given product, there are two or 
more suppliers with the same unitCost, the best supplier is now (the) one 
that has the minimum deliveryTime. 
 
8.5 Figure 8.12 shows the schema of a system that records employees and 
their salary history. There is an instance of SalaryChange for each change 
in an employee’s salary. The change comes into effect on the specified 
date. In this schema, an employee’s current salary is a derived attribute 
whose value can be obtained from the last salary change in effect. The de-
rived ternary association HasSalary gives the employee’s salary on any 
date. Define the derivation rule of both types in OCL. You may assume 
that there is a variable, CurrentDate, which holds the current date. 

Fig. 8.12. Example with a derived attribute and a derived ternary association
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9 Integrity Constraints 

Section 9.1 studies the concept of an integrity constraint and its importance 
in conceptual modeling. Section 9.2 shows that integrity constraints can be 
classified from several points of view. These classifications help us in un-
derstanding the nature of integrity constraints. Section 9.3 describes the 
definition of static constraints in logic and in UML. In general, integrity 
constraints are very diverse, but there are some particular kinds that appear 
very often. Section 9.4 describes some of them. Section 9.5 identifies the 
creation-time constraint, an important particular kind of transition con-
straint, and explains a way to define it in conceptual schemas. 

9.1 The Concept of an Integrity Constraint 

9.1.1 Integrity = Validity + Completeness 

An information base contains a representation of the knowledge that an in-
formation system has about the state of a domain. The information system 
obtains this knowledge from messages received through an input interface. 
In a perfect world, the information base would be an exact representation 
of the domain. Input messages would always be correct, and the system 
would receive all relevant messages. In this perfect world, the information 
base would always contain only true facts (it would be valid) and all rele-
vant facts (it would be complete). 

For example, an information base that contains the names of the em-
ployees of a company would be valid if the names it contained were all 
correct, and complete if it contained the names of all employees. 

Unfortunately, in the real world, it is likely that some input messages 
may communicate something that is not true, and then some of the facts in 
the information base may be invalid. It is also likely that the system will 
not receive all relevant messages, and then the information base may be 
incomplete.  

Validity and completeness are the two components of the integrity of an 
information base. An information base has integrity when the facts that it 
contains are valid and it contains all relevant facts. Integrity is an impor-



182      9 Integrity Constraints 

tant property of an information base. Lack of integrity normally has nega-
tive consequences, which in some cases may be serious.  

When we define a conceptual schema, we do not consider the case of a 
system malfunction, such as the accidental loss of data or the erroneous 
computation of false facts from valid ones. The possibility of malfunction-
ing does always exist, but we deal with this problem in the design and con-
struction phases, and not in conceptual modeling. 

9.1.2 Integrity Constraints 

In most systems, total integrity can be achieved only by human interven-
tion. To ensure integrity, we must systematically check the facts in the in-
formation base against the domain. For example, many retail stores need to 
check periodically that the products they have on the shelves correspond to 
their records in the information system. It is not difficult to see that in 
some cases the cost of integrity will be very high and hard to avoid. 

However, it is possible to build mechanisms into an information system 
that automatically guarantee some level of integrity. We can define condi-
tions on the information base and the events that change it such that, if sat-
isfied, we can have some level of confidence on the integrity of the infor-
mation base. These conditions, called integrity constraints, are defined in 
the conceptual schema. An integrity constraint is a condition that might not 
be satisfied in some states of the information base or by some events, but it 
is understood that the information system will include mechanisms to 
guarantee its satisfaction at any time. 

For example, assume that our schema includes the relationship type 

WorksIn (Employee, Project) 

Assume also that all employees work in one or more projects. A constraint 
could then be “Each employee works in some project”, which is easily ex-
pressed by the cardinality Card(employee; project; WorksIn) = (1,∞). Once 
this has been defined in the schema, we may assume that for each em-
ployee e in the information base there will be one or more relationships 
WorksIn(e,p). This constraint does not guarantee full integrity (for in-
stance, the information base may not have the correct assignment of em-
ployees to projects), but it is a necessary condition for it.  

A constraint may be simple or compound. A constraint is compound if it 
can be decomposed into a conjunction of other constraints; otherwise, it is 
simple. For example, the constraint  

“Each employee works in some project”  
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is simple while 

“Each employee works in some project and each project has a 
name”  

is compound. Given that a compound constraint is satisfied if and only if 
all of its component constraints are, we usually deal only with simple con-
straints. 

We say that an information base is consistent if it satisfies all defined in-
tegrity constraints. We also say that a constraint is violated when the in-
formation base does not satisfy it. 

9.1.3 Violation of Integrity Constraints 

An integrity constraint is a condition that may be violated. Violations may 
be caused by 

• the arrival of input messages; 
• the absence of one or more input messages during a time interval.   

The first case is the commonest. A new message violates a constraint when 
its facts, or the changes induced by them, do not satisfy the constraint.  

As an example, consider an event NewAccount, which happens when a 
customer opens a new account in a bank, with some initial deposit. As-
sume also that the schema contains the following relationship types: 

Holder(Account, Person) 
Balance(Account, balance:Money) 

An input message that communicates the occurrence of a NewAccount 
event could violate the following constraints: 

1. “The initial deposit must be at least one euro”. This constraint in-
volves the event type NewAccount, and it can only be violated when 
an event of this type occurs. 

2. “A customer cannot open two or more accounts on the same day”. 
This constraint may be violated if a customer opens more than one 
account on a given day. 

3. “A customer cannot have more than three accounts at the same time”. 
This constraint may be violated if a customer tries to open a new ac-
count when he already holds three. The constraint involves the new 
event and the information base. 

4. “A customer cannot open a new account if the total balance of the ac-
counts he already has is negative”. 
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In the same example, note that a condition such as  

“The initial balance of an account is the initial deposit of the event 
that opens it”  

is not an integrity constraint. If we assume that the occurrence of a New 
Account event triggers the execution of an operation that inserts a relation-
ship of type Balance (Account, balance:Money), with a balance equal to 
the initial deposit, and that this is the only way to create a new account, 
then the condition will always hold. No input message can violate it. The 
condition must be interpreted as a requirement for the operation. Of 
course, the operation could be implemented in a way that does not satisfy 
the requirement (for instance, by assigning an initial balance of 1000 eu-
ros), and then the condition would fail. In such a case, however, the reason 
for the failure would be an error in the design and construction of the sys-
tem, and not a constraint violation. 

Likewise, derivation rules are not integrity constraints. Even if deriva-
tion rules can be seen as conditions relating facts in the information base, 
they are not violable by the presence or absence of input messages. Viola-
tion of a derivation rule may be due only to an error in the derivation proc-
ess. 

Less frequently, a constraint may also be violated by the nonarrival of 
an input message within some time interval. For example: 

1. “All new employees are assigned to some department within 15 
days”. Assume an employee is hired on day d. The system must then 
receive an input message reporting an assignment of the employee to 
some department before d + 15. The absence of such a message vio-
lates the constraint. 

2. “All employees report on their activities at least once per month”. 
This constraint states that for each employee in the information base, 
there must be a report event at least once per month. 

Some conditions requiring the presence of input messages are only vio-
lable (and therefore, may only be integrity constraints) if we assume that 
the system’s lifetime is bounded. For example, with this assumption, the 
condition 

“All projects finish” 

is an integrity constraint because it may be violated: when the system ends 
its lifetime, there may be one or more unfinished projects and then the con-
straint would be violated. However, if we assume that the system’s lifetime 
is unbounded, then the condition is not violable. 
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Recall that an integrity constraint is a condition that must be satisfied at 
all times. Satisfaction of a constraint is not only a desirable property, it is 
mandatory. Therefore, if a condition expresses only a desirable behavior of 
the domain, it is not a constraint. A typical example is the condition 

 “A library user should return a book after at most six weeks” 

Satisfaction of this condition requires, for each loan, the arrival of a return 
message within six weeks. However, in this case, the nonarrival of such a 
message does not mean that the information base has lost integrity. It 
means only that someone is not behaving as desired. In such cases, the 
condition specifies an output (an overdue letter) to be produced by the in-
formation system, rather than a constraint. 

9.1.4 Violation Response Actions 

When a constraint is violated, the system must produce some response to 
maintain consistency of the information base. In general, three classes of 
responses can be distinguished: 

1. To refuse the message that produces the violation. This response is 
not applicable when the violation is due to the absence of an input 
message.  

2. To execute a compensating action. This corresponds to extending the 
input message with new facts, such that the extended message main-
tains consistency. If the violation is due to the absence of an input 
message, this response corresponds to generating one. 

3. To ask for the correction of some previous message. This may be ap-
plicable when the violation is caused by some incorrect previous 
message, or by the nonpresence in due time of some message. 

More elaborate responses are also possible, such as marking input mes-
sages as an exception, or modifying the integrity constraint to accommo-
date the exception. 

9.2 Classification of Integrity Constraints 

A conceptual schema includes two kinds of constraints: inherent and ex-
plicit. The former are implicitly assumed by the corresponding conceptual 
modeling language. A typical example is the referential integrity con-
straint: many languages assume that a relationship may exist only if the en-
tities that it relates also exist. The latter are those defined by the conceptual 
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modelers. For example, the (also) typical constraint that “the salaries of 
employees cannot decrease” is explicit because it is not implicitly assumed 
by any (known) language. In this chapter, we deal only with explicit con-
straints. 

Integrity constraints may be classified from several points of view. In 
the following, we describe three classifications, according to: 

• the reason why the constraint must hold (the source); 
• the facts involved by the constraint (the scope); 
• the cause of the violation of the constraint. 

9.2.1 Classification According to Source 

Integrity constraints may be classified according to their source into ana-
lytical, deontic, and empirical constraints. 

A constraint is analytical if its truth follows from the definition or 
meaning of the facts involved in it. Violations of analytical constraints are 
due to errors in the representation of facts. For example, the constraint “a 
door cannot be both open and closed at the same time” is analytical. 

A constraint is deontic if it expresses a condition that holds in the do-
main because of imposition by some authorized agent. This agent is the 
source of the constraint. Violations of deontic constraints may be caused 
by errors in the representation of facts or because the behavior of the do-
main deviates from the stated condition. For example, the constraint “an 
employee’s salary may not decrease” is deontic. 

A constraint is empirical if it expresses a condition that holds empiri-
cally in the domain. Nobody has stated that the condition must be satisfied, 
but the domain behaves in a way that satisfies it. Violations of empirical 
constraints may be caused by errors in the representation of facts or be-
cause some exception has arisen in the domain. For example, in the case of 
a supermarket the constraint “A customer does not buy more than 999 
units of any item” would be empirical. 

The following are examples of constraints with their classification:  

1. A person’s age cannot be negative (analytical) 
2. A person cannot be fired unless he is an employee (analytical). 
3. A person cannot be married to himself (analytical). 
4. A customer cannot open two or more accounts on the same day (de-

ontic). 
5. All employees report on their activities at least once a month (deon-

tic). 
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6. All new employees are assigned to some department within one 
month (deontic). 

7. A person may not be over 150 years old (empirical). 
8. A book has at least five pages (empirical). 
9. A person has at most 30 children (empirical). 

9.2.2 Classification According to Scope 

Constraints are conditions that must be satisfied by the information base 
and the events. Usually, a constraint involves only a limited set of facts in 
the information base and/or a limited set of events, and this allows us to 
classify it according to the facts involved or scope. We distinguish six 
kinds, which are:  

• A static constraint involves the facts of a single state of the information 
base, and it must be satisfied in every state. All (complete) conceptual 
modeling languages allow static constraints to be defined. 

• A transition constraint involves the facts of two or more states of the in-
formation base. Usually, such a constraint involves facts of only two 
consecutive states, constraining the transition between them, but in gen-
eral the constraint may refer to any number of states. By extension, we 
also use the term “transition constraints” for those constraints that must 
be satisfied only in some states of the information base. 

• An event constraint involves only one event. 
• An event history constraint involves two or more events that occur at the 

same or different times. Constraints of this kind are often used to define 
allowed temporal orderings of event occurrences. 

• A global constraint involves the facts of one or more states of the in-
formation base and one or more events.  

• A particular kind of global constraint, called an event precondition con-
straint, involves only an event and the state of the information base 
when the event occurs.  There are many event precondition constraints, 
and most conceptual modeling languages allow their definition.  

The following are examples of constraints, with their classification ac-
cording to their scope: 

1. All employees are always assigned to some project (static). 
2. A customer may not be the holder of more than three accounts at any 

time (static). 
3. An employee’s salary may not decrease (transition). 
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4. An employee cannot be assigned to the same project for more than 
one year (transition). 

5. The initial deposit of a new bank account must be at least one euro 
(event). 

6. A customer may not open two accounts on the same day (event his-
tory). 

7. A customer may not open a new account if he is a holder of some ac-
count that has been overdrawn for more than 30 days during the last 
year (global). 

8. A customer may not open a new account if the total balance of the 
accounts he already has is negative (event precondition). 

9. A library member may not reserve an item for a future loan period if 
he already has that item on loan (event precondition). 

Note that the above classification is based on where the facts involved in 
the constraint are located.  The five kinds are exclusive (the event precon-
dition constraint is a particular kind of global constraint). However, some-
times the same constraint may be defined in several equivalent ways, in-
volving different facts, and then the constraint may be classified into 
different kinds. 

For example, consider the constraint “There may be at most one direc-
tor”. If we define it in terms of the entity type Director, then it is a static 
constraint: in each state of the information base, the population of Director 
may have at most one instance. However, if directors can be created only 
with the event NewDirector, we can define the constraint in terms of this 
event type, and then it is a precondition constraint: a NewDirector event 
may happen only if the population of Director is empty.  

9.2.3 Classification According to Cause of Violation 

We have already mentioned that a constraint may be violated by the arrival 
of an input message or by the absence of one or more messages during a 
time interval. In the first case, we say that the cause of the violation is the 
event reported by the message, and that the constraint is event-violable. In 
the second case, we say that the cause of the violation is the passing of 
time, and then the constraint is time-violable. 

A few examples of each class are: 

1. The salary of an employee may not decrease (event-violable). 
2. The initial deposit in an account must be at least one euro (event-

violable). 
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3. An account may not be overdrawn for more than 30 days (time-
violable). 

4. All employees must report on their activities at least once per month 
(time-violable). 

9.3 Representation in an Information System 

In this section, we study how to represent static constraints in current-state 
conceptual models, in the logic and the UML languages. Throughout this 
section, we use examples from a hypothetical meeting management sys-
tem. The system deals with committees that organize meetings, which take 
place in rooms. 

9.3.1 Logical Representation 

In logic, integrity constraints can be defined by formulas that the informa-
tion base must satisfy (they must be true) or, equivalently, such constraints 
can be defined by predicates, called inconsistency predicates, which cannot 
have any corresponding fact in the information base. We say that a condi-
tion constraint is a constraint defined by a formula, and an inconsistency 
constraint is a constraint defined by an inconsistency predicate. We study 
condition constraints first, and then inconsistency constraints. 

9.3.1.1 Condition Constraints 

In logic, a static condition constraint is defined by a closed first-order for-
mula φ that the information base is required to satisfy at any time. The 
formula φ can involve only facts of the current state of the information 
base. 

For example, consider the following relationship types (see Fig. 9.1): 

 HoldsMeeting (organizer:Committee, Meeting) 
 TakesPlace (Meeting, location:Room) 
 Date (Meeting, Date) 
 MayUse (Committee, Room) 

The static constraint 

 IC1: “The location of an unfinished or future meeting must be one 
 of the rooms that the meeting organizer may use” 
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can then be defined by the formula1 
 HoldsMeeting(c,m) ∧ Date(m,d) ∧ CurrentDate(cd) ∧  
 d ≥ cd ∧ TakesPlace(m,r) →  MayUse(c,r) 

where CurrentDate(cd) holds if cd is the current date. 
It is useful to distinguish between targeted and untargeted condition 

constraints. If E is an entity type defined in the conceptual schema, a con-
dition constraint φ is targeted at E when it can be rewritten as: 

E(e) → ϕ(e) 

That is, subformula ϕ(e) must be true in the information base for any e that 
is an instance of E at any time. The variable e must occur and be free in 
ϕ(e). A condition constraint is untargeted if it cannot be targeted at any en-
tity type defined in the conceptual schema.  

For example, IC1 is targeted at Meeting: 

 Meeting(m) → ∀c,d,cd,r 
  (HoldsMeeting(c,m) ∧ Date(m,d) ∧ CurrentDate(cd) ∧  
  d ≥ cd ∧ TakesPlace(m,r) →  MayUse(c,r)) 

As another example, the static constraint 

 IC2: “A committee cannot hold two meetings on the same day” 

is targeted at Committee: 

 Committee (c) → ∀m1,m2,d1,d2 
  (HoldsMeeting(c,m1) ∧ HoldsMeeting(c,m2) ∧  
  m1 ≠ m2 ∧ Date(m1,d1) ∧ Date(m2,d2) → d1 ≠ d2) 

                                                      
1 Recall that variables without quantifiers are assumed to be universally quantified 

in front of the formula. 
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Most condition constraints are targeted, and often they can be targeted at 
several entity types. IC2, for example, can also be expressed as targeted at 
Meeting: 

 Meeting (m1) → ∀c,m2,d1,d2 
  (HoldsMeeting(c,m1) ∧ HoldsMeeting(c,m2) ∧  
  m1 ≠ m2 ∧ Date(m1,d1) ∧ Date(m2,d2) → d1 ≠ d2) 

An example of an untargeted condition constraint might be 

  IC3: “There must be at least one large room” 

which is defined by the formula 

 ∃r (Room(r) ∧ Size(r,Large)) 

9.3.1.2 Inconsistency Constraints 

The idea of inconsistency constraints consists in defining an inconsistency 
predicate for each constraint, and requiring that no facts of this predicate 
may hold in the information base at any time. The general form of an in-
consistency predicate Inc is 

Inc(x1, …, xm) ↔ φ′(x1, …, xm) 

In general, an inconsistency predicate may have any number m of argu-
ments, with m ≥ 0. A fact of an inconsistency predicate corresponds to a 
violation of the corresponding constraint. The m arguments give the values 
for which such a violation exists. This is an advantage over condition con-
straints, whose evaluation returns only “true” or “false”.  

For example, the definition of the constraint IC2 by an inconsistency 
predicate OverlappingMeetings could be 

 OverlappingMeetings(c,m1,m2) ↔   
  HoldsMeeting(c,m1) ∧ HoldsMeeting(c,m2) ∧  
  m1 ≠ m2 ∧ Date(m1,d) ∧ Date(m2,d)  

The meaning of a fact OverlappingMeetings(c,m1,m2) is that committee c 
holds meetings m1 and m2 on the same day. Note that c, m1 and m2 are the 
values for which the constraint is violated. 

The distinction between targeted and untargeted constraints applies also 
to inconsistency constraints. An inconsistency constraint is targeted at an 
entity type E if it can be expressed in the form 

Inc(e,x1, …, xm) ↔ E(e) ∧ ϕ′(e,x1, …, xm) 
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An inconsistency constraint is untargeted if it cannot be targeted at any ex-
isting entity type.  

For example, IC2 can be expressed as targeted at Committee: 

 OverlappingMeetings(c,m1,m2) ↔ 
       Committee(c)  ∧    
       HoldsMeeting(c,m1) ∧ HoldsMeeting(c,m2) ∧ m1 ≠ m2 ∧ 
       Date(m1,d) ∧ Date(m2,d)  

Finally, an example of an untargeted inconsistency constraint might be 
IC3: 

 NoLargeRoom ↔ ¬ ∃r (Room(r) ∧ Size(r,Large)) 

9.3.2 Representation in UML 

UML has a few predefined static constraints, normally with an associated 
graphical symbol. The most important is the cardinality constraint, which 
we studied in Chap. 4. Some other examples are the aggregation and the 
composition constraints, which we saw in Chap. 7. Other predefined con-
straints will be presented later on in this book. 

More general static constraints must be specified as invariants. An 
invariant is a constraint that is linked to an entity type. An invariant con-
straint consists of an OCL expression of type Boolean, which must be true 
for each instance of an entity type at any time. The specification of an in-
variant has the general form 
context EntityType inv constraintName: 
  an OCL expression of type Boolean 

The name of the constraint is optional. 
Only condition constraints can be specified by invariants. Inconsistency 

constraints cannot be defined using the standard constructs of UML. 
Targeted condition constraints can be expressed naturally by invariants. 

A condition constraint targeted at an entity type E is expressed by an in-
variant in the context of E. For example, the invariant corresponding to 
IC1 targeted at Meeting is (see Fig. 9.1) 
context Meeting inv usesAuthorizedRoom: 

date ≥ CurrentDate implies  
  organizer.room->includes(location)  

where CurrentDate is a variable that holds the current date. The expression 
must be true for each instance of Meeting at any time.  

As another example, the constraint IC2 targeted at Committee is defined 
by the invariant 
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context Committee inv meetingsOnDistinctDays: 
  meeting -> isUnique(date) 

Now the expression must be true for each instance of Committee at any 
time. 

Untargeted condition constraints can be expressed by invariants too, al-
though not as naturally as in the case of targeted constraints. In principle, 
the invariant corresponding to an untargeted condition constraint could be 
linked to any entity type. In particular, all of them could be grouped in a 
special-purpose entity type, if so desired. However, in practice, it may be 
sensible to link untargeted condition constraints to the entity types that are 
semantically more natural.  

For example, the invariant corresponding to IC3 can be linked to Room: 
context Room inv atLeastOneLargeRoom: 
  Room.allInstances()-> exists(size = Size::Large) 

In this form, the invariant states that for each instance of Room, there 
must be at least one large room. This is an overspecification because, in 
this constraint, the invariant needs to be true only once. On the other hand, 
the invariant alone does not express IC3 completely because the invariant 
is true when the population of Room is empty. The invariant needs to be 
complemented by another constraint requiring that there is at least one 
room. This new constraint cannot be expressed as a UML invariant. A bet-
ter context for the invariant would be a singleton entity type, if there is one 
in the schema. 

9.3.3 Representation of Constraints by Operations 

In object-oriented languages such as UML, an alternative (although not 
standard) representation of constraints is by means of operations. One of 
the advantages of this form of representation is that it can be used for con-
dition and inconsistency constraints. In general, in this book we shall use 
operations only when the standard representation is not possible or when 
the use of operations provides a better representation of integrity con-
straints. 

In what follows, we shall explain how to define static constraints in this 
way. We deal first with condition constraints. The idea consists in associat-
ing each constraint with a query operation, called a constraint operation. 
The only purpose of a constraint operation is to specify the corresponding 
constraint. Constraint operations are purely conceptual; they may or may 
not be part of the implementation. We indicate that an operation is a con-
straint operation by means of the stereotype «IC». All operations stereo-
typed by «IC» represent constraints. In this book, we shall show constraint 
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operations in the class diagrams, but in practice a conceptual modeler 
might prefer not to show them.  

The constraint operation corresponding to a condition constraint tar-
geted at E,  

E(e) → ϕ(e) 

is defined as an instance operation of E, and its specification has the gen-
eral form: 
context E::conditionName():Boolean 
  body: an OCL expression of type Boolean  

where conditionName is a name that identifies the constraint. The seman-
tics is that the result of the body expression at any time, for any instance e 
of E, must be the same as the result of the evaluation of ϕ(e) in the infor-
mation base. Furthermore, this result must be true. Note that it is implicit 
that the result of the operation must be true at all times during the lifespan, 
and for all instances of the hosting entity type (E) at any time. 

Consider, as an example, the condition constraint IC1 targeted at Meet-
ing. Figure 9.2 shows the corresponding operation in the entity type Meet-
ing. The formal specification in OCL is 
context Meeting::usesAuthorizedRoom():Boolean 
  body: date ≥ CurrentDate implies  
        organizer.room->includes(location)  

Targeting a constraint at an entity type E does not imply the semantics 
that it can be violated only when there are “local” changes to instances of 
E. In the above example, the constraint is targeted at Meeting, but it may 
be violated if there is a change in the rooms that a committee may use. The 
intended semantics is only that the evaluation of the operation usesAuthor-
izedRoom must give the value true for each instance of Meeting and at all 
times.  

If a condition constraint can be targeted at two or more entity types, we 
then have the choice of where to host the constraint operation. From a con-

Fig. 9.2. Four examples of constraint operations in UML

1 **
size:Size

«IC»atLeastOneLargeRoom()

Room Meeting

date:Date

«IC»usesAuthorizedRoom()
«IC»hasRoomConflictWith()

Committee

«IC»meetingsOnDistinctDays()
1

organizerlocation

MayUse

* *

1 **
size:Size

«IC»atLeastOneLargeRoom()

Room

size:Size

«IC»atLeastOneLargeRoom()

RoomRoom Meeting

date:Date

«IC»usesAuthorizedRoom()
«IC»hasRoomConflictWith()

Meeting

date:Date

«IC»usesAuthorizedRoom()
«IC»hasRoomConflictWith()

Committee

«IC»meetingsOnDistinctDays()

Committee

«IC»meetingsOnDistinctDays()
1

organizerlocation

MayUse

* *

Fig. 9.2. Four examples of constraint operations in UML

1 **
size:Size

«IC»atLeastOneLargeRoom()

Room Meeting

date:Date

«IC»usesAuthorizedRoom()
«IC»hasRoomConflictWith()

Committee

«IC»meetingsOnDistinctDays()
1

organizerlocation

MayUse

* *

1 **
size:Size

«IC»atLeastOneLargeRoom()

Room

size:Size

«IC»atLeastOneLargeRoom()

RoomRoom Meeting

date:Date

«IC»usesAuthorizedRoom()
«IC»hasRoomConflictWith()

Meeting

date:Date

«IC»usesAuthorizedRoom()
«IC»hasRoomConflictWith()

Committee

«IC»meetingsOnDistinctDays()

Committee

«IC»meetingsOnDistinctDays()
1

organizerlocation

MayUse

* *



9.3 Representation in an Information System      195 

ceptual point of view, all alternatives are valid. The conceptual modeler 
may choose the place he thinks is more natural or easier to specify.  

As another example, the constraint operation corresponding to IC2 tar-
geted at Committee would be 
context Committee::meetingsOnDistinctDays():Boolean 
  body: meeting -> isUnique(date) 

The constraint operation corresponding to an untargeted condition con-
straint φ is defined as a class operation of some entity type, and its specifi-
cation has the same general form as before: 
context E::conditionName():Boolean 
  body: an OCL expression of type Boolean  

Now the semantics is that the result of the evaluation of this operation at 
any time must be the same as the result of the evaluation of φ in the infor-
mation base. Moreover, this result must be true. Note that, in this method, 
it is implicit that the result of the operation must be true at all times during 
the lifespan. 

For example, the untargeted constraint IC3 could be defined by the con-
straint operation (shown underlined in Fig. 9.2) 
context Room::atLeastOneLargeRoom():Boolean 
  body: Room.allInstances() -> exists(size = Size::Large)  

Inconsistency constraints can be defined similarly. The main difference 
is that now the result of the constraint operation must give the values for 
which the corresponding constraint is violated.  

For example, if IC2 is defined as an inconsistency constraint targeted at 
Committee, the constraint operation is then an instance operation of Com-
mittee, with signature 
context Committee::overlappingMeetings():Set(Meeting) 

The constraint will be satisfied if the operation returns the empty set for all 
committees. If for some committee the result is not the empty set, the 
meaning is that the constraint is violated for that committee. In this case, 
the result gives the set of (two or more) meetings of that committee that 
would be held on the same day. 

As a new example of an inconsistency constraint, consider 

 IC4: “Two meetings cannot share the same room on the same 
 day” 

This constraint can be targeted at Meeting. Figure 9.2 also shows the cor-
responding constraint operation in Meeting, with stereotype «IC». The 
formal specification in OCL would be 
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context Meeting::hasRoomConflictWith():Set(Meeting) 
  body: location.meeting->select 
          (m|m <> self and m.date = self.date) 

For any given meeting (self), the result of the operation is the set of meet-
ings that have the same location as self and have the same date. The con-
straint is satisfied when the operation gives the empty set for all meetings.  

9.4 Particular Kinds of Static Constraint 

Most constraints defined in an information system are static. Some of them 
appear so often that they have a particular construct in some conceptual 
modeling languages. A prominent example is the cardinality constraint of 
relationship types, which we studied in Chap. 4. Other important particular 
kinds of constraint related to taxonomies will be studied in the next chap-
ter. A few more particular kinds are presented below. 

9.4.1 Key Constraints 

One of the best-known constraints is the key constraint. A key of entity 
type E is a set of one or more attributes of E such that the mapping from 
the population of E to the corresponding group of attribute values is one-
to-one. A key is simple if it consists of a single attribute; otherwise it is 
composite. Two different instances of E cannot have identical values for 
all attributes in the key. An entity type may have any number of keys.  

UML does not provide a specific construct for defining key constraints 
and therefore they must be defined by invariants or constraint operations. 

There are two examples of keys in Fig. 9.3. One is the attribute name of 
Country. If there may not be two countries with the same name, then name 
is a key of Country. Formally 
context Country inv uniqueName: 
  Country.allInstances()->isUnique(name) 

According to the standard interpretation of invariants, the above OCL 
expression must be true for each instance of Country. In this case, the in-
variant is an overspecification because the expression is exactly the same 
for each instance. A finer specification could be given by an untargeted 
condition constraint, such as 
context Country::uniqueName():Boolean 
  body: Country.allInstances()->isUnique(name) 
where uniqueName is now a class operation of Country. 
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The second example of a key in Fig. 9.3 is the set of the two attributes 
longitude and latitude of Town. The formal specification in UML is 
context Town inv longitudeAndLatitudeAreKey: 
  Town.allInstances()-> 
    isUnique(Tuple{lo=longitude,la=latitude}) 

9.4.2 Reference Constraints 

As we saw in Chap. 5, there are three kinds of references: simple, com-
pound, and set. Here we shall ignore the difference between mutable and 
immutable references. References are built from one or more relationship 
types that satisfy a given constraint. UML does not provide a specific con-
struct for defining them, and therefore they must be defined by invariants 
or constraint operations.  

Simple keys are simple references. Therefore, the attribute name of 
Country in Fig. 9.3 is also a simple reference for Country.  

Another example of a simple reference is the association road–
roadSegment. Each road segment references a road, and all roads can be 
referenced in this way. Note that the two cardinalities of the association 
suffice to define it as a simple reference, without any further specification.  

Composite keys are compound references. Therefore the key {longitude, 
latitude} of Town is a compound reference for Town. 

If we assume that a town name is unique within a country, but that two 
towns in different countries may have the same name, then another exam-
ple of a compound reference for Town in Fig. 9.3 is the attribute name of 
Town and the association town–country. The formal specification is 
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context Town inv uniqueNameAndCountry: 
  Town.allInstances()->isUnique(Tuple{n=name,c=country}) 

Finally, if we assume that there is at most one road segment between 
any two towns, then the association Connects is a set reference for Road-
Segment. The formal specification is 
context RoadSegment inv roadSegmentReferencedByTwoTowns: 
  RoadSegment.allInstances()->isUnique(Tuple{twoTowns=town}) 

9.4.3 Inclusion Constraints 

In general, an inclusion constraint defines that a set A must be included in 
another set B. The sets may be populations of entity types or of relation-
ship types. An equality constraint between sets A and B is equivalent to 
two inclusion constraints, one of A in B, and another of B in A. 

The commonest inclusion constraints are between two entity types. 
They state that, at any time, the population of an entity type E1 is a subset 
of the population of another entity type E2. We shall denote by E1 IsA E2 
the inclusion constraint of E1 in E2. Normally, if E1 IsA E2, then E1 is a 
specialization of E2, as we shall study in the next chapter. For example, 
Student IsA Person. However, there may be an inclusion constraint 
between two types such that one cannot be seen as a specialization of the 
other. For example, if a library allows borrowing of videotapes, we may 
have Videotape IsA LoanableObject.  Other libraries may have a different 
borrowing policy, and for them the inclusion constraint would not hold. 

In UML, an inclusion constraint E1 IsA E2 is represented graphically by 
means of a solid-line path from E1 to E2 with a large hollow triangle at the 
end of the path where it meets E2. We shall see many examples in the next 
chapter. 

Inclusion constraints between relationship types are similar, but they oc-
cur less frequently. They state that, at any time, the population of a rela-
tionship type R1 is a subset of the population of another relationship type 
R2. We shall denote the inclusion constraint of R1 in R2 by R1 IsA R2. R1 and 
R2 must have the same degree. Normally, as in the previous case, if R1 IsA 
R2 then R1 is a specialization of R2, as we will study in the next chapter. For 
example, Manages IsA Works.  
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UML represents the inclusion constraints of entity and relationship 
types in the same way. However, for inclusion constraints R1 IsA R2 such 
that R1 is not seen as a specialization of R2, UML offers an alternative rep-
resentation. Figure 9.4 shows an example. Here, some agents are author-
ized to use some resources and some agents use some resources. Assume 
that in a given domain, there is a rule that an agent may use a resource only 
if it is authorized to use it. For some conceptual modelers, Uses is not a 
specialization of IsAuthorizedToUse, even if the population of Uses is in-
cluded in that of IsAuthorizedToUse.  In cases such as this one, we may 
define the constraint as indicated in Fig. 9.4, by adorning the participant 
usedResource with the property string 

 {subsets <authorizedResource>} 

The meaning is that the set of resources that an agent uses is a subset of 
those it is authorized to use. The adornment can be defined in any of the 
association ends. In this example, an alternative equivalent definition 
would be to adorn the association end user with the property string 

{subsets <authorizedUser>} 

The meaning now is that the set of agents that use a resource is a subset of 
those that are authorized to use it. 

9.4.4 Disjunction Constraints 

In general, a disjunction (or exclusion) constraint defines that two sets 
cannot have any element in common. The sets may be populations of en-
tity types or of relationship types.  

The commonest disjunction constraints are between two entity types. 
They state that, at any time, the populations of the two types must be 
disjoint. We shall denote the disjunction constraint of E1 and E2 by E1 
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Disjoint E2, for example Man Disjoint Woman. Of course, if E1 is disjoint 
with E2, then E2 is disjoint with E1, and no type can be disjoint with itself.  

UML has a construct for graphically defining disjunction constraints, 
but it can be used only in the context of taxonomies, as will be explained 
in the next chapter. In the general case, we have to rely on OCL. For 
example, if we want to state that Employee is disjoint with Retiree, we can 
write 
context Employee inv EmployeeIsDisjointWithRetiree: 
  Employee.allInstances()-> 

  intersection(Retiree.allInstances())->isEmpty() 

Disjunction constraints between relationship types are similar, but they 
occur less frequently. They state that, at any time, the population of the 
two types must be disjoint. We shall denote the disjunction constraint of R1 
with R2 by R1 Disjoint R2. R1 and R2 must have the same degree. In UML, 
these constraints can be represented as in the previous case, which means 
that in general we have to rely on OCL. For example, if we have the fol-
lowing relationship types: 

 IsAuthorOf (author:Person, Paper) 
 Reviews (reviewer:Person, Paper) 

and we want to define that the author of a paper cannot be one of its re-
viewers (that is, IsAuthorOf Disjoint Reviews), we can write 
context Paper inv authorsDoNotReviewTheirPapers: 
  author->intersection(reviewer)->isEmpty() 

9.4.4.1 Inference Rules for Inclusion and Disjunction Constraints 

Given a set of inclusion and disjunction constraints, new ones can be in-
ferred by means of the following inference rules: 

• (Reflexivity.) For every entity or relationship type X, X IsA X holds. 
• (Transitivity.) If X IsA Y and Y IsA Z hold, then X IsA Z also holds. 
• (Joint Transitivity.) If X Disjoint Y and Z IsA X hold, then Z Disjoint Y 

also holds. 

A set S of inclusion and disjunction constraints is not strongly satisfiable 
if X Disjoint X is derivable from S by means of the above inference rules. 
For example, the following set of constraints is not strongly satisfiable 
(why?): 

TeachingAssistant IsA Teacher 
 TeachingAssistant IsA Student 
 Teacher Disjoint Student 
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9.4.4.2 Xor Constraints 

One kind of disjunction constraint that is predefined in UML is the con-
straint named xor. It may be applied to a set of associations that share a 
participant entity type, and it specifies that any instance of the shared en-
tity type may have links from only one of the associations. Figure 9.5 
shows an example. The constraint states that cars may be owned by per-
sons or by a company, but not by persons and a company. The equivalent 
invariant is 
context Car inv: 
  personalOwner->notEmpty() implies companyOwner->isEmpty() 
  and   
  companyOwner->notEmpty() implies personalOwner->isEmpty() 

 
An xor constraint is not satisfiable if, in some of its associations, the 

shared entity type has a mandatory participation. In the example of Fig. 
9.5, if we had Cmin(car;personalOwner) = 1 then the satisfaction of the 
constraint would require an empty population of the car–companyOwner 
association. 

Likewise, an xor constraint is not satisfiable if there is an inclusion con-
straint between any pair of its associations. 

9.4.5 Covering Constraints 

A covering constraint between a set A and sets B1, …, Bn  defines that A 
must be a subset of the union of B1, …,  Bn. The sets may be populations of 
entity types or of relationship types. Formally, 

A ⊆ B1 ∪ … ∪ Bn 
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Note that when n = 1, a covering constraint is an inclusion constraint of 
A in B1. Even so, inclusion constraints are dealt with separately because 
they have wider consequences.  

The commonest covering constraints are between entity types. We shall 
denote by  

E Covered E1, …,  En 

the covering constraint between E and E1, …,  En. For example,  

 Gift Covered Book, Album, Flower 

UML has a construct for graphically defining covering constraints, but it 
can be used only in the context of taxonomies, as will be explained in the 
next chapter. In the general case, we have to rely on OCL. For example, if 
we want to state the above constraint, we can write 
context Gift inv isABookAlbumOrFlower: 
  self.oclIsTypeOf(Book) or  
  self.oclIsTypeOf(Album) or  
  self.oclIsTypeOf(Flower) 

Covering constraints between relationship types are similar, but they occur 
less frequently. The relationship types must have the same degree. 

Given a set of covering constraints, new ones can be inferred by means 
of the following inference rules (X and Y are entity or relationship types, 
and S and Sj are sets of these types): 

• (Augmentation.) If X ∈ S then X Covered S holds.  
• (Transitivity.) If X Covered S1 and Y Covered S2 hold and Y ∈ S1, then X 

Covered S3 holds, where S3 = (S1 – {Y}) ∪ S2. 

If considered alone, any set of covering constraints is strongly satisfi-
able. An information base in which all entity types have the same in-
stances, all binary relationship types have the same instances, and so on, 
satisfies any set of covering constraints. Of course, when we take into ac-
count other constraints that may exist in the schema, the covering con-
straints may become unsatisfiable. 
 
9.4.6 Constraints of Recursive Binary Relationship Types 

Many recursive binary relationship types have particular properties that 
may be defined as constraints. In conceptual modeling, the most important 
properties are symmetry, transitivity, and reflexivity. In what follows, we 
give their formal definition in logic and in UML. The examples refer to the 
schema shown in Fig. 9.6, which deals with a domain of sets and their rela-
tionships. 
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A relationship type R(p1:E, p2:E)  is symmetric if 

R(x,y) → R(y,x) 

asymmetric if 

  R(x,y) → ¬R(y,x) 

and antisymmetric if 

  R(x,y) ∧ R(y,x) → x = y 

In Fig. 9.6, the association IsDisjointWith is symmetric, IsProperSubsetOf 
is asymmetric, and IsSubsetOf is antisymmetric. The formal definition of 
these properties as invariants is 
context Set inv IsDisjointWithIsSymmetric: 
  disjointSet.disjointSet->includes(self)  
context Set inv IsProperSubsetOfIsAsymmetric: 
  properSuperset.properSuperset->excludes(self)  
context Set inv IsSubsetOfIsAntisymmetric: 
  superset->excluding(self).superset->excludes(self)  

R is transitive if 
  R(x,y) ∧ R(y,z) → R(x,z) 

and intransitive if 

  R(x,y) ∧ R(y,z) → ¬R(x,z) 

In Fig. 9.6, the associations IsProperSubsetOf and IsSubsetOf are transi-
tive. The formal definition of this property as an invariant is: 
context Set inv IsProperSubsetOfIsTransitive: 
  properSuperset->includesAll(properSuperset.properSuperset) 
context Set inv IsSubsetOfIsTransitive: 
  superset->includesAll(superset.superset) 
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R is reflexive if 

  E(x) → R(x,x) 

and irreflexive if 

E(x) → ¬ R(x,x) 

In Fig. 9.6, the association IsProperSubsetOf is reflexive and IsDis-
jointWith is irreflexive. The formal definition of these properties as invari-
ants is 
context Set inv IsProperSubsetOfIsReflexive: 
  properSuperset->includes(self)  
context Set inv IsDisjointWithIsIrreflexive: 
  disjointSet->excludes(self)  

There are some relationships between the above constraints: 

• An asymmetric relationship type is antisymmetric and irreflexive. 
• An intransitive relationship type is irreflexive. 

9.4.7 Entity Type Cardinality Constraints 

An entity type cardinality constraint specifies a minimum and maximum 
(min, max) number of instances for the population of a given entity type. In 
UML, this constraint can be defined by an invariant with the general form 
context E inv cardinalityConstraint: 
  let numberOfInstances:integer = E.allInstances()->size() in 
  numberOfInstances >= min and numberOfInstances <= max 

9.5 Creation-Time Constraints 

A creation-time constraint is a particular kind of transition constraint that 
appears several times in most conceptual schemas. A creation-time con-
straint of an entity type E is a constraint that its instances must satisfy only 
at the time when they become an instance of it. The distinction between 
condition and inconsistency constraints that we made for static constraints 
applies also to creation-time constraints. In the following, we first intro-
duce this constraint by means of an example, and then show how to define 
it in UML. 

Assume a domain in which there are salespeople who sell products in 
stores; see Fig. 9.7.  In this domain, consider the constraint 
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 “The store in which the sale is made sells the product sold” 

The invariant 
context Sale inv theStoreSellsTheProduct: 
  store.product->includes(productSold) 

would define the constraint incorrectly, because it requires that the store 
sells the product at any time at which the sale exists. A sale becomes an in-
stance of Sale at some time, and then remains in this situation forever. The 
invariant need not hold at every time that the sale is an instance of Sale, 
but only when it becomes an instance of Sale. The store must sell the 
product at that time only. Later, the store may cease to sell a product, but 
such changes must not affect the previous sales.  

Creation-time constraints cannot be defined in standard UML. The only 
possibility is to extend the language. Several options exist. In what follows 
we shall describe one of them, which is a variant of the constraint opera-
tions described above. 

A creation-time condition constraint of an entity type E can be repre-
sented by an operation stereotyped «iniIC», with the general form 
context E::conditionName():Boolean 
  body: an OCL expression of type Boolean  

Now the semantics is that the operation must be evaluated at the time when 
an entity becomes an instance of the entity type E, and the result of the 
evaluation must be true.  

Figure 9.7 shows an example corresponding to the above constraint. The 
name of the operation is storeSellsProduct. Its formal specification in OCL 
is 

Fig. 9.7. Two examples of creation-time constraints
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context Sale::storeSellsProduct():Boolean 
  body: store.product->includes(productSold) 

As another example, consider the creation-time constraint 

 “The seller of the sale works in the store that made the sale” 

The specification of the corresponding constraint operation is 
context Sale::sellerWorksInStore():Boolean 
  body: store = seller.store 

It is interesting to observe that the association sale–store is constant and 
that it could be defined as a derived association. In this case, the above 
constraint would not be necessary. The derivation rule would be 
context Sale::store:Store 
  derive: seller.store 

9.6 Bibliographical Notes 

Motro (1989) introduced the distinction between the two components of 
integrity, namely validity and completeness. The distinction was made for 
relational databases, but it is also relevant for information bases and 
events. Reiter (1992) argued clearly that integrity constraints are state-
ments not about the domain but about the contents of the information base. 
That publication also discussed the subtleties of the concept of integrity 
constraint satisfaction. A modern view on these topics was presented by 
Godfrey et al. (1998). 

When a constraint is violated, the system must produce some response. 
There are several possible response actions. Nicolas and Yazdanian (1978) 
suggested either rejecting the update that produces the violation, or execut-
ing a compensating action. Furtado et al. (1987) discussed both of these re-
sponses for some constraints in the ER model. Borgida (1985b) described 
other responses, like marking the update as an exception or modifying the 
violated constraint. 

Wieringa et al. (1989) presented the classification of constraints into 
analytical, empirical, and deontic constraints. A similar classification was 
given by Boman et al. (1997).  

The distinction between static and transition constraints is classical. It 
has been described in (Nicolas and Yazdanian 1978), in the report 
(Griethuysen 1982), and in many other places. A more complete classifica-
tion was given in (Dubois et al. 1986). Dignum et al. (1987) provided a 
different classification, based on an analysis of natural-language sentences.  
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Static constraints have been studied since the beginning of databases. 
The initial work focused on particular kinds of constraints. Nicolas (1982) 
was a pioneer in extending constraints to any closed formula in first-order 
logic. Godfrey et al. (1998) and Thalheim (2000) provided a modern 
treatment of constraints in a logical framework. The inconsistency predi-
cates were introduced by Kowalski (1978). They were used by DAPLEX 
(Shipman 1981) with a slight change in meaning.  

There has been a great deal of work on particular kinds of constraints. 
Tsichritzis and Lochovsky (1982) presented several constraints and the 
constructs provided by seven modeling languages. Ram and Khatri (2005) 
described a comprehensive list of set-based constraints. Most of the work 
has been done in the context of specific modeling languages. Of particular 
historical interest is SDM, described in (Hammer and McLeod 1981). 
Bracchi et al. (1979), Bodart and Pigneur (1993) and Thalheim (2000) de-
scribed constraints in the ER model. Dey et al. (1999) described particular 
constraints involving relationship types. The language that provides the 
most specific constructs for defining particular kinds of constraints is 
probably ORM (Halpin 2001) and its ancestors. In UML/OCL, Ackermann 
and Turowski (2006) identified a collection of constraint patterns, which 
can be specified by means of constraint stereotypes as suggested by Costal 
et al. (2006). 

There are several methods for the analysis of the satisfiability of particu-
lar constraints. Atzeni and Parker (1988) presented the inference rules for 
inclusion and disjunction constraints, and algorithms for checking their 
satisfiability. Lenzerini (1987) extended that work to covering constraints. 
Formica (2002) presented a method for checking the satisfiability of a spe-
cific class of constraint. Jarrar and Heymans (2006) analyzed the satisfi-
ability of some of the ORM constraints. In the context of UML constraints, 
a similar work was presented by Berardi et al. (2005). A satisfactory solu-
tion for the general class of OCL constraints has not been found yet. Quer-
alt and Teniente (2006b) suggested an approach based on the use of meth-
ods that test query containment in deductive database systems. 

An alternative to satisfiability analysis suggested by Lundberg (1983) is 
the use of tools that check whether a particular information base (object 
diagram) satisfies a set of constraints. So far, the most complete of these 
tools is USE, presented by Richters and Gogolla (2000) and Gogolla et al. 
(2005). 

Nicolas and Yazdanian (1978) formalized creation-time constraints for 
the first time (and also deletion-time constraints, which we have not stud-
ied here) in the logical representation. The TaxisDL software description 
language (Borgida et al. 1993) allowed the definition of initial (and final) 
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assertions, which must hold when an object becomes (or ceases to be) an 
instance of a class.  

The use of operations for the specification of integrity constraints was 
presented in (Olivé 2003b). 

9.7 Exercises 

9.1 Consider a schema with an entity type Person and the relationship type 

 IsParentOf (parent:Person, child:Person) 

Assume a particular state of the domain, and describe an information base 
that is: 

1. Invalid. 
2. Incomplete. 
3. Invalid and incomplete. 

 
9.2 Assuming the schema given in the previous exercise: 

1. Define informally some constraints that the information base must 
satisfy to have integrity. 

2. Do these constraints ensure the integrity of the information base? 
 
9.3 Consider a schema with the base entity type Person, the following base 
relationship types 

 Sex (Person, Sex) 
 IsMotherOf (mother:Person, child:Person) 
 IsFatherOf (father:Person, child:Person) 

the derived entity types Man and Woman, and the derived relationship 
types 

 IsParentOf (parent:Person, child:Person) 
 IsSiblingOf (Person, sibling:Person) 

Assuming that there is only one event type, Birth, which communicates the 
person born, his or her sex, his father and mother, determine which of the 
following statements are constraints and, for those which are, explain how 
they can be violated: 

1. A person’s sex is either male or female. 
2. A person may be an only child. 
3. A person cannot be a parent of himself. 
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4. Two persons are siblings if they have a common parent. 
5. A person cannot be sibling of himself. 
6. A person can have at most one father and one mother. 
7. A person can be a parent of at most 20 children. 
8. A mother is a female person. 

 
9.4 Classify, according to the source, scope and cause of violation, each of 
the following constraints found in a hotel room management system. As-
sume that the only events are Reservation, Cancellation, and Registration.  

1. The departure date of a reservation cannot be before the arrival date.  
2. A reservation must be guaranteed with a credit card. 
3. On the day of arrival of a noncancelled reservation, there must be ei-

ther a cancellation or an arrival of that reservation. 
4. A person cannot occupy two different rooms on the same day.  
5. For maintenance purposes, a room cannot be occupied for more than 

90 consecutive days.  
6. A person cannot make a reservation if he has cancelled two or more 

reservations during the last year.  
7. A single room cannot be occupied by two or more persons. 

 
9.5 Consider the schema shown in Fig. 9.8 and define in OCL the follow-
ing constraints: 

1. The chapters of a book have different titles. 
2. The chapters of a book have different numbers. 
3. In a book, chapter numbers are consecutive, starting at number 1. 
4. The initial page number of a chapter is less than that of its final page. 
5. The initial page number of each chapter of a book (except the first) is 

greater than that of the final page of the previous chapter. 

 

Fig. 9.8. Example of schema dealing with books and their chapters
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9.6 Consider the schema shown in Fig. 9.9 and define the following con-
straints: 

1. OrderNo is a key of Order. 
2. The association orderLine–order and the attribute lineNo are an im-

mutable compound reference for OrderLine.  
3. The associations orderLine–order and orderLine–product are an im-

mutable compound reference for OrderLine. 
 
9.7 Modify Fig. 9.3 and the constraints given in Sects. 9.4.1 and 9.4.2 to 
indicate that the simple, compound and set references given for Country, 
Town, and RoadSegment are immutable.  

 
9.8 Some of the constraint examples given in the seminal paper (Nicolas 
1982) have become popular. The constraints of this exercise are based on 
them. Assume the schema shown in Fig. 9.10. Define in OCL the follow-
ing constraints: 

1.  If a department d sells a product p, then there is a company c that 
supplies p to d. 

2. The products of the family “Aspirin” are supplied only by the com-
pany “Bayer”. 

3. If a company supplies the product “Hydrogen”, then it also supplies 
the product “Oxygen”. 

4. If a company supplies some product of the family “Liquid”, then it 
also supplies some product of the family “Gas”. 

5. No company can supply two different departments with the product 
“Hydrogen”. 

6. There is at least one family which is supplied by every company. 
 

Fig. 9.9. Example of schema dealing with orders, their lines and the products 
ordered
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Fig. 9.10. Example of schema dealing with supplies of products to departments



10 Taxonomies 

It is often the case that the instances of an entity type must also necessarily 
be an instance of another entity type. This can be understood as a special 
relationship, an IsA relationship, between entity types (and, in general, be-
tween concepts). IsA relationships are constraints. Entity types and their 
IsA relationships form a network structure called a taxonomy. Taxonomies 
are a very important part of conceptual schemas, and the objective of this 
chapter is to study them. 

We begin by studying the concept of specialization in Sect. 10.1. The 
inverse concept, generalization, is presented in Sect. 10.2. Taxonomies are 
described in Sect. 10.3. We shall see that a taxonomy determines the entity 
types of which an entity can be an instance. We shall also see that deriv-
ability has a significant influence on how the IsA and other similar con-
straints of a taxonomy can be satisfied. When an entity type has subtypes, 
some relationship types or constraints may be refined. This is studied in 
Sects. 10.4 and 10.5, respectively. Taxonomies can be extended to rela-
tionship types. Section 10.6 introduces the concepts of specialization and 
generalization of relationship types. 

10.1 Specialization 

An entity type E' is a specialization of an entity type E if E' has the defin-
ing properties of E and some others. E' is more specialized, because it con-
tains more defining properties than does E. Many commonly used concepts 
are specializations. For example, a definition of bicycle is1 
  A bicycle is a pedal-driven land vehicle with two wheels attached to a frame, one 
 behind the other. 

Therefore, bicycle is a specialization of vehicle. A bicycle has the defining 
properties of a vehicle, to which are added “travels on land”, “is pedal-
driven”, and “has two wheels attached to a frame, one behind the other.”  

                                                      
1 Wikipedia. 
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The specialization operation consists in defining one entity type as a 
specialization of another. Specialization establishes a relationship between 
two entity types, usually called an IsA relationship, which we study in the 
following section.  

10.1.1 The IsA Relationship 

Let E and E′ be entity types. We write E′ IsA E to indicate textually that E′ 
is a specialization of E. For example, Bicycle IsA Vehicle. In terms of the 
populations, E′ IsA E is an inclusion constraint of E′ in E: at any time, the 
instances of E′ are also instances of E. Naturally, there may be instances of 
E which are not instances of E′. Formally, if E′ IsA E, then in logic we 
have 

E′ (e) → E(e) 

If E′ IsA E, then we say that E′ is a subtype of E, and that E is a super-
type of E′. For example, Bicycle is a subtype of Vehicle, and Vehicle is a 
supertype of Bicycle. Sometimes we say that E' is subsumed by E, or that 
E subsumes E′, and also that E' is a hyponym of E, and that E is a hy-
pernym of E'. 

In Chap. 7, we saw that a role is a set of properties that characterize the 
situation of the instances of an entity type E at a given time. Normally, the 
instances of E are in a given situation only temporarily, and not all in-
stances of E need to be in the same situation. For example, “is a student” is 
a role of Person. When an instance of E can play only one role of a role 
type, then that role type can be represented as a subtype of E. For example, 
if a person can be at most one student, then the student role type can be 
represented by the entity type Student, defined as a subtype of Person. 

It is easy to see that the relationship IsA is transitive. If we have E′′ IsA 
E′ and E′ IsA E, then we also have E′′ IsA E. On the other hand, in many 
formalizations, the IsA relationship is considered to be reflexive. 

A relationship E′ IsA E is direct if there are not two other relationships 
such that E′ IsA E′′ and E′′ IsA E. Otherwise, it is indirect. Subtypes and 
supertypes of direct (or indirect) IsA relationships are also called direct (or 
indirect). An entity type cannot be an indirect subtype of itself. Apart from 
particular cases, a schema should not include indirect or reflexive IsA rela-
tionships. 
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An entity type is of single specialization if it is a direct subtype of one 
and only one entity type. An entity type is of multiple specialization if it is 
a direct subtype of two or more entity types. For example, if we define  

 Square IsA Rectangle and  
 Square IsA Rhombus 

then Square is of multiple specialization. 
The most widely used graphical representation of specialization is a 

solid-line path from the subtype to the supertype, with a large hollow tri-
angle at the end of the path where it meets the supertype. UML also uses 
this form of representation. Figure 10.1 shows an example: Rectangle and 
Rhombus are single specializations of Parallelogram; Square is a multiple 
specialization of Rectangle and Rhombus; and Parallelogram is an indirect 
supertype of Square.  

10.1.2 Entity Types Derived by Intersection and Multiple 
Classification 

One particular kind of multiple-specialization entity type is the entity type 
derived by intersection, which we studied in Sect. 8.3. An entity type E is 
derived by intersection of entity types E1, …, En if E is a direct subtype of 
E1, …, En and the instances of E are exactly those which are at the same 
time an instance of E1, …, En. In Fig. 10.1, Square is an entity type derived 
by intersection of Rectangle and Rhombus. 

Fig. 10.1. Examples of specializations. Rectangle and Rhombus are of 
single specialization. Square is of multiple specialization
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In conceptual models that allow multiple classification, an entity may be 
an instance of several types not related by specializations. This means that 
it is not always necessary to define entity types derived by intersection. As 
we saw in Sect. 8.6, there must be a justification for defining derived 
types.  

For example, in Fig. 10.1, an entity e may be an instance of both Rec-
tangle and Rhombus. It is not necessary to define a new type derived by in-
tersection, such as Square, and to indicate that e is a direct instance of it, 
and thus an indirect instance of Rectangle and Rhombus. Square must be 
defined in a schema only if there is a justification for it. In this example, a 
possible justification could be that we wish to explicitly define that an en-
tity that is both a rectangle and a rhombus is called a “square”. 

10.1.3 The Entity Type Entity 

Many conceptual models require an auxiliary entity type called Entity or 
similar (Object, Thing, etc.) such that it is a direct or indirect supertype of 
all entity types defined in a schema. The existence of this type is handy for 
methodological purposes and for the analysis of schemas. In this book, we 
shall assume that Entity is defined in all schemas,2 although for reasons of 
space it is not generally shown in the diagrams. 

All entities that are an instance of some type E are also an instance of 
Entity. Therefore, for any entity type E defined in a schema, we have E IsA 
Entity. 

On the other hand, if an entity e is an instance of Entity at some time, it 
must also be an instance of some other type at that time. That is, no entity 
may be solely an instance of Entity.  

10.2 Generalization 

An entity type E is a generalization of entity types E1, …, En (with n ≥ 1) 
if the set of defining properties of each of the E1, …, En includes the defin-
ing properties of E. The entity type E is more general than E1, …, En be-
cause it has fewer defining properties. For example, Person is a generaliza-
tion of Man and Woman, because the concepts of man and woman include 
the properties of person. 

                                                      
2 Entity could be omitted in those rare schemas in which it would be a direct su-

pertype of only one type. 
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The generalization operation consists in defining an entity type as a 
generalization of others. The generalization establishes a relationship be-
tween several entity types called Gens, which we study in the following. 

10.2.1 The Gens Relationship 

Generalization and specialization are two different views of the IsA rela-
tionship, one from the supertype and the other from the subtypes. How-
ever, the term “specialization” refers to a single IsA relationship, while 
“generalization” refers to a set of IsA relationships that have the same su-
pertype. We shall adopt this meaning and we shall denote textually the 
generalization of E1, …, En into E by E Gens E1, …, En. Gens is an abbre-
viation for Generalizes. For example, Person Gens Man, Woman. There is 
an obvious relationship between IsA and Gens: if E Gens E1, …, En, then 
E1 IsA E, …, and En IsA E. 

Formally, in logic, if E Gens E1, …, En, then 

Ei(e) → E(e)     i = 1, …, n 

In UML, a generalization is represented graphically by combining its IsA 
relationships into a single tree with a hollow triangle used as an arrowhead. 
Figure 10.2 shows an example. 

A given entity type may be the supertype of several generalizations. For 
example, Person is the supertype of the following two generalizations:  

 Person Gens Man, Woman  
 Person Gens Child, Young, Adult.  

In addition, an entity type may be a subtype of several generalizations. For 
example, Employee is a subtype of the following two generalizations (see 
Figure 10.3):  

  

Fig. 10.2. Person generalizes Man and Woman
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Fig. 10.2. Person generalizes Man and Woman
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 Person Gens Student, Employee  
 TaxPayer Gens Employee, Company 

10.2.2 Constraints on Generalizations 

Two important static constraints related to generalizations are the covering 
(or completeness) and disjointness constraints. We shall discuss them in 
the following paragraphs. 

A generalization E Gens E1, …, En satisfies the covering constraint if 
the instances of E must be an instance of at least one Ei (i = 1, …, n). For-
mally, 

E(e) → E1(e) ∨ … ∨ En(e) 

The generalizations that must satisfy the covering constraint are called 
complete; otherwise, they are called incomplete. For example,  

 Person Gens Man, Woman  

is complete while  

 Vehicle Gens Bicycle, Car  

is incomplete (there are other kinds of vehicles). 
The covering constraint of generalizations is exactly the same as the one 

that we studied in the preceding chapter. However, there is a subtle point 
that is worth mentioning. If a generalization E Gens E1, …, En must satisfy 
the covering constraint, then given that 

Ei(e) → E(e)     i = 1, …, n 

we have not only 

E(e) → E1(e) ∨ … ∨ En(e) 

Fig. 10.3. Examples of generalizations. Person is a common supertype of two 
generalizations. Employee is a common subtype of two generalizations
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but also 

E(e) ← E1(e) ∨ … ∨ En(e) 

which is not required by the covering constraint alone. 
A generalization E Gens E1, …, En satisfies the disjointness constraint if 

each instance of E is an instance of at most one Ei. Formally, for each Ei (i 
= 1, …, n), 

Ei(e) →  ¬ E1(e) ∧ … ∧ ¬ Ei-1(e) ∧ ¬ Ei+1(e) ∧ … ∧ ¬ En(e) 

The generalizations that must satisfy the disjointness constraint are 
called disjoint; otherwise, they are called overlapping. In the particular 
case of n = 1, the generalization is disjoint. For example,  

 Person Gens Man, Woman  

is disjoint while  

 Person Gens SinglePerson, Student  

is overlapping. 
The disjointness constraint is equivalent to a set of disjunction con-

straints between two entity types, which we studied in the preceding chap-
ter. A generalization E Gens E1, …, En is disjoint if Ei is disjoint with Ej 
for i,j = 1, …, n, with j > i. In total, there are n(n - 1)/2 disjunction con-
straints.  

A generalization is overlapping if it need not satisfy some of these dis-
junction constraints. For example, the generalization  

 Person Gens SinglePerson, MarriedPerson, Student 

is overlapping, because students may be single or married. Note that 
SinglePerson is disjoint with MarriedPerson. 

Covering and disjointness are orthogonal constraints; therefore, we have 
four kinds of generalizations 

• complete/disjoint; 
• complete/overlapping; 
• incomplete/disjoint; 
• incomplete/overlapping. 

Incomplete and overlapping generalizations are not subjected to the cover-
ing and disjointness constraints. In this respect, they are unconstrained. 

In UML, covering and disjointness constraints are defined graphically 
by placing the keywords complete or incomplete and disjoint or overlap-
ping near the common part of the tree or the arrowhead; see Fig. 10.3. 
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10.2.3 Generalization/Specialization Dimension 

In principle, a generalization may be any set of IsA relationships with the 
same supertype. In practice, however, it makes sense to group into a gen-
eralization the IsA relationships that belong to the same dimension. A di-
mension can be seen as a kind of attribute of E that may take n values V1, 
…, Vn (with n ≥ 2). There is one subtype Ei for each possible value Vi of 
this attribute. An instance e of E is also an instance of the subtype Ei if e 
has the value Vi in the dimension attribute. 

For example, consider the dimension “job type” of persons (Fig. 10.4). 
According to this dimension, a person may be a salesperson, clerk, engi-
neer or manager. In this case we have Person Gens Salesperson, Clerk, 
Engineer, Manager.  

Often, the dimension is a condition that may take two values: true or 
false. For instance, according to the “right angles” dimension, Parallelo-
grams may be Rectangle or NonRectangle, and according to the “equal 
sides” dimension, Parallelograms may be Rhombus or NonRhombus. 

In UML, the set of IsA relationships that belong to the same dimension 
is called a generalization set. Graphically, the IsA relationships that belong 
to the same generalization set may be combined into a single tree with an 
arrowhead (see Fig. 10.4). The name of the dimension may be placed near 
the arrowhead. The completeness and disjointness constraints that apply to 
the generalization set are also placed near the arrowhead. 

There is a relationship between the characteristics of the dimension at-
tribute and the taxonomic constraints of the generalization: 

• If the attribute is single-valued, the generalization is disjoint; otherwise, 
it is overlapping. 

• If the attribute is total, the generalization is complete; otherwise, it is in-
complete. 

Fig. 10.4. Generalization of Person according to the job type dimension
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In the example of Fig. 10.4 we have assumed that every person has at 
most one job type and that there are persons without a job. 

 10.2.4 Explicit Subtypes versus Explicit Dimension Attributes  

The schema in Fig. 10.4 is equivalent to that in Fig. 10.5. In the former, 
the subtypes are explicit and the dimension attribute is implicit, while in 
the latter, the dimension attribute is explicit and the subtypes are implicit. 
Sometimes the dimension attribute is in fact represented by a binary asso-
ciation. 

The knowledge represented in the two schemas is the same. The explicit 
dimension attribute gives smaller schemas, but explicit subtypes are to be 
preferred when the subtypes participate (or may participate in the future) in 
one or more relationship types. In the above example, if we need to repre-
sent the sales made by a salesperson or the department managed by a man-
ager, then the schema in Fig. 10.4 is better. 

If we want to explicitly represent both the subtypes and the dimension 
attribute, then we must define one of them as derived.  

Though the dimension attribute may be an explicit attribute of the super-
type, we may not wish to define a subtype for each possible value, but 
rather for only some of them. For example, there may be the association 
LivesIn (Person, placeOfResidence:Town). Instances of Town might be 
New York, Paris, or many others. A dimension of Person could be the per-
son’s place of residence, but in a particular application we might be inter-
ested only in people from certain places, such as New York or Paris. In this 
case we would define only the subtypes of interest (NewYorker, Parisian), 
and the generalization would be incomplete. 

Fig. 10.5. Representation by an explicit dimension attribute of the schema shown 
in Fig. 10.4
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10.2.5 Partitions 

A partition is a generalization that satisfies both the covering and the dis-
jointsness constraint. A given entity type may be the supertype of several 
partitions. Each partition has a different dimension. In UML, partitions are 
generalization sets for which the constraints are disjoint and complete.  

 We write E Partd E1, …, En to denote the partition of E into E1, …, En. 
Partd is an abbreviation for Partitioned. For example, 

 Person Partd Man, Woman 

10.3 The Taxonomy of a Conceptual Schema 

In conceptual modeling, a taxonomy is a set of concepts and a set of taxo-
nomic constraints. A taxonomy usually refers to the set of entity types in a 
schema and their taxonomic constraints. However, given that relationship 
types are concepts too, there might be taxonomies of relationship types, 
but they are of lesser practical interest. The taxonomy of the entity types is 
the core of a schema. The taxonomy defines the relevant entity types in the 
domain and determines the possible participants in relationship types.  

Every taxonomy includes the entity type Entity, which is the only one 
that has no supertype. All the other types have one or more supertypes. 
The types that are not supertypes are called leaf types. In Fig. 10.6, C and 
D are leaf entity types. 

Fig. 10.6. Example of a taxonomy that is not satisfiable: there is an inclusion 
and a disjunction constraint between D and B
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The set of taxonomic constraints consists of the inclusion, disjunction, 
and covering constraints involving the entity types in the taxonomy. The 
taxonomic constraints include not only those that are explicitly defined in 
the schema, but also those that can be deduced from them, using the infer-
ence rules described in the preceding chapter.  

The set of taxonomic constraints is strongly satisfiable if there are no in-
clusion and disjunction constraints between the same pair of entity types. 
In Fig. 10.6, the taxonomic constraints are not satisfiable. 

10.3.1 Valid Type Configurations 

In single-classification conceptual models, an entity may be an instance of 
only one leaf type, while in multiple-classification models an entity may 
be an instance of two or more leaf types. The concept of a valid type con-
figuration, described below, allows us to check whether these conditions 
are satisfied.  

A valid type configuration VTC is a nonempty set of entity types E1, …, 
En that satisfies the following conditions: 

• There may be an entity that is an instance of E1, …, En at a given time. 
An entity may be an instance of E1, …, En at a given time if there is no 
disjunction constraint between a pair of types of E1, …, En. 

• VTC includes at least one leaf type. 
• If Ei,j ∈ VTC and there is an inclusion constraint of Ei,j in Ei then we 

must have Ei ∈ VTC. 
• If Ei ∈ VTC and there is a covering constraint of Ei in Ei,1, …, Ei,m, then 

for some (one or more) j = 1, …, m we must have Ei,j ∈ VTC. 

For example, consider the taxonomy shown in Fig. 10.7. The following 
are valid type configurations: 

VTC1 = {Entity, Person, Man} 
VTC2 = {Entity, Person, Man, Student} 
VTC3 = {Entity, Person, Man, Employee, TaxPayer} 
VTC4 = {Entity, Person, Man, Student, Employee, TaxPayer} 
VTC5 = {Entity, Person, Woman} 
VTC6 = {Entity, Person, Woman, Student} 
VTC7 = {Entity, Person, Woman, Employee, TaxPayer} 
VTC8 = {Entity, Person, Woman, Student, Employee, TaxPayer} 
VTC9 = {Entity, Company, TaxPayer} 
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According to this schema, there may be entities that are an instance of 
more than one leaf entity type, such as an instance of Woman, Student, and 
Employee. If such entities cannot exist in the domain, then we must change 
the taxonomy. 

The set of taxonomic constraints defined in a taxonomy is satisfiable if 
each entity type defined in that taxonomy appears in one or more valid 
type configurations. The example in Fig. 10.6 is not satisfiable, because 
the only valid type configuration is  

 VTC = {A, B, C}. 

10.3.2 Taxonomic Constraints and Derivability 

As we know from the preceding chapter, a constraint is a condition that 
may in some situations be violated, although it is assumed that the infor-
mation system will enforce them. Naturally, this also applies to taxonomic 
constraints. 

However, there is a relationship between taxonomic constraints and the 
derivability of entity types, such that some taxonomic constraints are satis-
fied by a schema. That is, in some cases the derivation rules and other con-
straints defined in a schema entail a taxonomic constraint. When this oc-
curs, the constraint is general domain knowledge rather than a constraint in 
the strictest sense. 

In what follows, we study the commonest constraints entailed by a 
schema. The examples are based on the taxonomy shown in Fig. 10.8. Per-
son is derived by union of Man and Woman. Child and Young are derived 
by specialization of Person. Adult is derived by specialization of Person 
and exclusion of Child and Young. 

Person
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Fig. 10.7. Example of taxonomy
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10.3.2.1 Inclusion Constraints 

If we have 

• the inclusion constraint of E′ in E, and 
• E′ is derived by specialization of E, 

then the inclusion constraint is entailed by the derivation rule of E′.  
There are three examples in Fig. 10.8. Child, Young, and Adult are de-

rived by specialization of Person. The three inclusion constraints of Child 
in Person, Young in Person, and Adult in Person are then entailed by the 
derivation rules. They are not constraints in the strict sense, because they 
cannot be violated.  

If we have 

• the inclusion constraint of E′ in E, and 
• E is derived by union of a set of types that includes E′, 

then the inclusion constraint is entailed by the derivation rule of E.  
In Fig. 10.8, there are two examples. Person is derived by union of Man 

and Woman. The two inclusion constraints of Man in Person and Woman 
in Person are implied by the derivation rule of Person. 

If we have 

• the inclusion constraint of E′ in E,  
• E′ is derived, and 
• E is base, 

then the inclusion constraint must be implied by the derivation rule of E′. 
If it is not, then the rule can be transformed into an equivalent one that en-
tails the constraint.  

Fig. 10.8. Example of taxonomy. Person is derived by union. Child, Young and 
Adult are derived by specialization of  Person
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The idea is that if the derivation rule of E′, 

E′(e) ↔ φ(e) 

does not entail the constraint 

E′(e) → E(e) 

then we can transform it into 

E′(e) ↔ φ(e) ∧ E(e) 

which now entails the constraint. 

10.3.2.2 Disjunction Constraints 

If we have 

• the disjunction constraint of E1 and E2, and 
• E1 is derived by specialization of another type E and by exclusion of a 

set of entity types that includes E2, 

then the disjunction constraint is entailed by the derivation rule of E1.  
In the example in Fig. 10.8, Adult is derived by specialization of Person 

and exclusion of Child and Young. Therefore, the disjunctions 

Adult Disjoint Child 
Adult Disjoint Young 

are entailed by the schema. 
If we have 

• the disjunction constraint of E1 and E2,  
• E1 is derived, and 
• E2 is base, 

then the disjunction constraint must be entailed by the derivation rule of 
E1. If it is not, then the rule can be transformed into another one that entails 
the constraint. 

10.3.2.3 Covering Constraints 

If we have 

• the covering constraint of E on E1, …, En, and 
• E is derived by union of E1, …, En, 

then the covering constraint is entailed by the derivation rule of E.  
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An example is given in Fig. 10.8. Person is derived by union of Man 
and Woman. Therefore, the covering constraint of Person on Man and 
Woman is entailed by the derivation rule of Person. 

If we have 

• The covering constraint of E on E1, …, En, and 
• Ej ∈ {E1, …, En} is derived by specialization of E and exclusion of {E1, 

…, En} – {Ej }, 

then the covering constraint is entailed by the derivation rule of Ej. 
In the example of Fig. 10.8, Adult is derived by specialization of Person 

and exclusion of Child and Young. Therefore, the covering constraint of 
Person on Child, Young and Adult is entailed by the derivation rule of 
Adult.  

10.3.3 Partitions and Derivability 

Let us apply the previous analysis to the particular case of partitions.  

10.3.3.1 Inclusion Constraints 

A partition P = E Partd E1, …, En includes n inclusion constraints of Ei in 
E. In some particular cases, some or all of these constraints are entailed by 
the schema. The most frequent cases are: 

• When E is derived by union of the subtypes of P. It is clear that in this 
case the derivation rule of E entails the above n inclusion constraints, 
and these are entailed by the schema.  

• When Ei is derived by specialization of E. In this case, the derivation 
rule of Ei entails the inclusion constraint of Ei in E, and this is entailed 
by the schema. 

10.3.3.2 Disjunction Constraints 

A partition P = E Partd E1, …, En includes n(n - 1)/2 disjunction con-
straints between pairs Ei and Ej, with i, j = 1, …, n, j > i. In some particular 
cases, a disjunction constraint of Ei and Ej is entailed by the schema. The 
most frequent particular case is: 

• When Ei (or Ej) is derived by specialization of E and by exclusion of the 
other subtypes of P. In this case, Ei is disjoint with all other subtypes of 
P.  
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10.3.3.3 Covering Constraints 

A partition P = E Partd E1, …, En includes a covering constraint of E on 
E1, …, En. In some particular cases, this covering constraint is entailed by 
the schema. The most frequent particular cases are: 

• When E is derived by union of the subtypes of P. It is clear that in this 
case the derivation rule of E entails the covering constraint. 

• There is a subtype Ei derived by specialization of E and exclusion of the 
other subtypes of P. 

As an example, consider the schema fragment shown in Fig. 10.9, with 
two partitions (P1 and P2). If we assume also that 

• Appliance is derived by union of the subtypes of P1  
• LowEnergyAppliance is derived by specialization of Appliance with the 

rule 
context LowEnergyAppliance::  
          allInstances():Set(LowEnergyAppliance) 
  body: Appliance.allInstances()-> 
          select(consumption ≤ Limit) 
• NormalEnergyAppliance is derived by exclusion of the other subtypes 

of P2, 

then the only taxonomic constraints not entailed by the schema are the ten 
disjunction constraints between the five subtypes of P1. 
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Fig. 10.9. Fragment of a schema with two partitions
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10.4 Relationship Type Refinement 

We know that a relationship type R(p1:E1, …, pn:En) consists of a set of 
participants, and that a participant is an entity type that plays a role in R. 
But what happens to R if Ei is one of its participants, and the taxonomy in-
cludes a specialization Ei,k IsA Ei? The generic answer is: nothing special. 
The instances of Ei,k are also instances of Ei and can therefore participate in 
relationships of type R. This is sometimes seen as if the subtypes inherit 
the relationship types defined in their supertypes. 

However, it often happens that when an instance e of Ei is also an in-
stance of one or more subtypes Ei,k of Ei, the instances of R in which e par-
ticipates must satisfy additional constraints. The same may happen when 
an instance of Ei is also an instance of other entity types, even if they are 
not a subtype of Ei. In general, we give the name refinement of a relation-
ship type to the definition of additional integrity constraints when the par-
ticipants are also of other types. The most important refinements are par-
ticipant refinement and cardinality constraint strengthening. By extension, 
redefining a derivation rule in a subtype of a participant is also considered 
a refinement. In what follows, we study each of these refinements. 

10.4.1 Participant Refinement 

A participant refinement of a relationship type constrains the types of its 
participants. For instance, assume the domain of the Olympic Games and 
consider the following relationship type and partitions: 

 WinsGoldMedal (winner:Athlete, Event) 
 Athlete Partd MaleAthlete, FemaleAthlete 
 Event Partd ManEvent, WomanEvent 

If we want to state that male athletes can only win gold medals in men’s 
events, and that female athletes can only win gold medals in women’s 
events, then we refine the participants of WinsGoldMedal twice, as fol-
lows: 

• If the winner is an instance of MaleAthlete, then the event must be an 
instance of ManEvent. 

• If the winner is an instance of FemaleAthlete, then the event must be an 
instance of WomanEvent.  

For presentation purposes, we shall first formalize this kind of refine-
ment for a simple yet frequent case, and then we shall extend it to the gen-
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eral case. We shall deal only with binary relationship types. The generali-
zation to n-ary ones is easy.  

We textually denote by  

R(pi:Ei,j → pk:Ek,l) 

with i, k = 1…2, a participant refinement of R(p1:E1,p2:E2). The first argu-
ment, pi:Ei,j, is the antecedent and the second argument, pk:Ek,l, is the con-
sequent. The meaning is that when the participant pi is an instance of Ei,j, 
the participant pk must be an instance of Ek,l. Using this notation, the par-
ticipant refinements of the example would be represented by 

WinsGoldMedal (winner:MaleAthlete → event:ManEvent) 
WinsGoldMedal (winner:FemaleAthlete → event:WomanEvent)  

In logic, a participant refinement R(pi:Ei,j → pk:Ek,l) is represented by the 
constraint 

R(e1,e2) ∧ Ei,j(ei) → Ek,l(ek) 

Note that this constraint is additional to the referential constraints of 
R(p1:E1,p2:E2): 

R(e1,e2) → E1(e1) 
R(e1,e2) → E2(e2) 

It is important to see that a participant refinement of R does not intro-
duce a new relationship type in the schema: it only adds a new constraint 
on R. 

UML allows an attribute in an entity type that is defined in one of its 
supertypes to be redefined. Similarly, it allows an association in an entity 
type in which one of its supertypes participates to be redefined. The attrib-

Fig. 10.10. Two participant refinements of WinsGoldMedal
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ute type and the type of an association participant are two of the character-
istics that may be redefined. We shall see later that multiplicities and de-
rivability are other characteristics that can be redefined. 

Participant refinements can be expressed as redefinitions. Figure 10.10 
shows the above example in UML. The association WinsGoldMedal is re-
defined twice. One redefinition expresses that if the winner is a MaleAth-
lete then the event must be a ManEvent, and the other that if the winner is 
a FemaleAthlete the event must be a WomanEvent. 

The general case of participant refinement of R(p1:E1,p2:E2) is textually 
denoted by  

R(pi:{Ei,1, …, Ei,n} → pk:{Ek,1, …, Ek,m}) 

with i, k = 1…2. Now, the antecedent and the consequent are a set of entity 
types. The meaning is that when a participant pi of R is an instance of all 
the types Ei,1, …, Ei,n, a participant pk must be an instance of some of the 
types Ek,1, …, Ek,m. In logic, the constraint to be added to the schema is 

R(e1,e2) ∧ Ei,1(ei) ∧ … ∧ Ei,n(ei) → Ek,1(ek) ∨ … ∨ Ek,m(ek) 

Normally, the types Ei,1, …, Ei,n are subtypes of Ei, and Ek,1, …, Ek,m are 
subtypes of Ek, but this is not mandatory. 

A participant refinement  

R(pi:{Ei,1, …, Ei,n} → pk:{Ek,1, …, Ek,m})  

makes sense if: 

• There may be an entity that is simultaneously an instance of Ei, Ei,1, …,  
and Ei,n, that is, if there is a valid type configuration VTC such that {Ei, 
Ei,1, …,  Ei,n} ⊆ VTC. 

• There may be an entity that is simultaneously an instance of Ek, Ek,j, 
with j = 1, …, m, that is, if there is a valid type configuration VTC' such 
that {Ek, Ek,j} ⊆ VTC'. 

If these conditions are not satisfied, the participant refinement does not 
have any effect. For example, 

WinsGoldMedal (winner:{FemaleAthlete, MaleAthlete} →  
event:WomanEvent) 

makes no sense because a winner cannot be an instance of FemaleAthlete 
and MaleAthlete at the same time. 
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10.4.2 Particular Kinds of Participant Refinement 

There are three particular kinds of participant refinement that are worth 
mentioning. The first is when the antecedent and/or the consequent are en-
tities rather than entity types. We use the same textual notation as before, 
although we are now referring to entities rather than entity types. 

For example, consider the relationship type and specialization 

MayPay (Customer, PaymentMethod) 
TroublesomeCustomer IsA Customer 

and assume that there is a rule that troublesome customers can pay only in 
cash. The rule can be represented by the participant refinement  

MayPay (customer: TroublesomeCustomer → 
 paymentMethod:Cash) 

This refinement cannot be expressed graphically in UML. We must rely 
on OCL for the formal definition: 
context TroublesomeCustomer inv mustPayInCash: 

paymentMethod = PaymentMethod::InCash 

where we have assumed that PaymentMethod is an enumeration. 
The second particular kind is when the antecedent is missing:  

R(→ pk:{Ek,1, …, Ek,m}) 

The obvious meaning is that the participant pk must necessarily be an in-
stance of some of the entity types Ek,1, …, Ek,m, independently of the types 
of the other participants. Formally, 

R(ei,ek) → Ek,1(ek) ∨ … ∨ Ek,m(ek) 

The last particular kind is when the consequent is missing:  

R(pi:{Ei,1, …, Ei,n} →)  

Here, the meaning is that a participant pi cannot simultaneously be an in-
stance of all the entity types Ei,1, …, Ei,n. Formally, 

R(ei,ek) ∧ Ei,1(ei) ∧ … ∧ Ei,n(ei) → false 

or equivalently, 

R(ei,ek) → ¬ (Ei,1(ei) ∧ … ∧ Ei,n(ei)) 

For example, suppose that we have the relationship type  

Drives (driver:Person, Car)  
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with  

Card(driver; car; Drives) = Card(car; driver; Drives) = (0,∞) 

and the partition  

Person Gens Child, Young, Adult  

If, as seems likely, children cannot drive cars, then we must define the par-
ticipant refinement as 

Drives(driver:Child →)  

or, equivalently, 

Drives(→ driver:{Young, Adult})  

Neither of the latter two kinds of participant refinement can be repre-
sented graphically in UML. Again, we have to rely on OCL for the formal 
definition. One possibility is 
context Child inv mayNotDriveCars: 

car->isEmpty() 

and another is 
context Person inv onlyYoungsAndAdultsMayDriveCars: 

car->notEmpty() implies  
         self.oclIsTypeOf(Young) or self.oclIsTypeOf(Adult) 

In this example, an alternative that follows the maximal-participation 
guideline described in Sect. 4.3, would be to define an entity type that gen-
eralizes Young and Adult and to define it as the driver participant in 
Drives, instead of Person. In this way, there is no need to state that chil-
dren cannot drive cars. Naturally, in this example, some conceptual model-
ers may prefer to refine participants rather than adding new entity types.  

10.4.3 Cardinality Constraint Strengthening 

Sometimes a cardinality constraint Card(pi;pj;R) = (min,max) of a relation-
ship type R(p1:E1,p2:E2) is strengthened when an entity playing the role pk 
(k = 1, 2) is also an instance of the entity types Ek,1, …, Ek,n. That is, in this 
case the cardinality is Card(pi;pj;R) = (min1,max1) with min1  > min or 
max1 < max. As in the general case, max1 must be greater than zero.  

For example, consider the relationship type IsPartOf (part:Wheel, 
whole:Vehicle), with 

Card(whole; part) = (0,∞) 
 Card(part; whole) = (0,1) 
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Assume also that we have the specialization Bicycle IsA Vehicle. If we 
want to define that, when the vehicle is a bicycle, the number of wheels 
must be 2, we strengthen the cardinality Card(whole; part) to (2,2). 

Textually, we represent this kind of refinement by the expression  

Card(pi:{Ei,1, …, Ei,n}; pj:{Ej,1}; R) = (min,max) 

Using this notation, the above refinement would be 

Card(whole:{Bicycle}; part; IsPartOf) = (2,2). 

In logic, the meaning of Card(p1:{E1,1, …, E1,n}; p2:{E2,1}; R) = 
(min,max) is the constraint 

E1(e1) ∧ E1,1(e1) ∧ … ∧ E1,n(e1) →  
min ≤ |{e2 | R(e1,e2) ∧ E2,1(e2) }| ≤ max 

and similarly for the other values of i, j. 
In UML, cardinality constraint strengthening can be expressed as re-

definitions. Figure 10.11 shows the above example in UML. The associa-
tion vehicle–part is redefined to express that if the whole is a Bicycle, then 
the multiplicity of the part role must be 2. 

As a more complex example, consider the following partitions of Per-
son: 

Person Partd Man, Woman 
Person Partd UnmarriedPerson, MarriedPerson 

Let us assume that we have the following relationship type: 

IsMarriedTo(husband:MarriedPerson, wife:MarriedPerson) 
Card(husband; wife) = Card(wife; husband) = (1,1)   

Fig. 10.11. Example of cardinality strengthening
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To indicate that the husband must be a Man and that the wife must be a 
Woman, we could define the refinements as 

PRef1 = IsMarriedTo(→ husband: Man) 
PRef2 = IsMarriedTo(→ wife: Woman) 

Alternatively, we could define the relationship type with different par-
ticipants: 

IsMarriedTo'(husband:Man, wife:Woman) 
Card(husband; wife) = Card(wife; husband) = (0,1) 

Now we must define the refinements 

PRef3 = IsMarriedTo'(→ husband: MarriedPerson) 
PRef4 = IsMarriedTo'(→ wife: MarriedPerson) 

and strengthen the cardinalities 

CRef1 = Card(husband:{MarriedPerson}; wife) = (1,1) 
CRef2 = Card(wife:{MarriedPerson}; husband) = (1,1) 

We would be worse off if we were to define the relationship type with 
the participant Person (see Fig. 10.12): 

IsMarriedTo′′ (husband:Person, wife:Person) 
Card(husband; wife) = Card(wife; husband) = (0,1)   

Fig. 10.12. Example of refinements. The association husband-wife is refined 
in the subtypes of Person
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In this case, we would need to define the above as PRef1, PRef2, PRef3, 
PRef4, CRef1 and CRef2. In UML, only this alternative may be represented 
graphically, as shown in Fig. 10.12.  

10.4.4 Interaction of IsA and Cardinality Constraints 

A set of cardinality constraints may be strongly satisfiable when it is con-
sidered in isolation but cease to be so when we take into account the 
strengthening of these constraints or take inclusion constraints into ac-
counts. 

Figure 10.13 shows an example of this. The cardinalities of Manages 
are strongly satisfiable if we do not take into account that Manager IsA 
Employee. However, if we take this inclusion constraint into account then 
the cardinalities cannot be strongly satisfied. The reader is invited to check 
that a nonempty finite population of Employee, Manager, and Manages 
that satisfies the two cardinalities and the inclusion constraint does not ex-
ist. 

Fortunately, there are methods, similar to those presented in Chap. 4, 
that check the strong satisfiability of cardinalities, taking into account their 
strengthening and inclusion constraints. Readers who are interested in this 
topic should consult the references provided at the end of this chapter. 

10.4.5 Derivation Rule Redefinition 

The population of a derived relationship type is defined by a derivation 
rule. Sometimes, the rule may be long or complex because the subtype of a 
given participant must be taken into account. When this happens, it may be 

Fig. 10.13. Example of cardinality and inclusion constraints that cannot 
be strongly satisfied

Employee

Manager

Manages

boss

1

2..*

Fig. 10.13. Example of cardinality and inclusion constraints that cannot 
be strongly satisfied

Employee

Manager

Manages

boss

1

2..*



10.4 Relationship Type Refinement      237 

practical to define a generic rule for R and to redefine it in a participant 
subtype. 

Consider the schema shown in Fig. 10.14. Every employee has a salary, 
which depends on his contract type. Salaried employees are paid a flat sal-
ary. Hourly employees are paid on the basis of the number of hours they 
work. Commissioned employees are paid a commission based on their 
sales.   

The complete derivation rule of the attribute salary at the level of Em-
ployee might be: 
• If the employee is salaried, the salary is his flat salary. 
• If the employee is hourly, the salary is the hourly rate multiplied by the 

number of hours worked. 
• If the employee is commissioned, the salary is the commission rate 

multiplied by the amount of the sales. 

It is not difficult to see that, in some cases, rules like this one may be very 
long or complex. A better alternative might be to provide a generic rule, if 
any were needed, at the level of Employee, and to redefine it in Sala-
riedEmployee, HourlyEmployee, and CommissionedEmployee. We would 
then have four short rules instead of a single long one. 

In standard UML, derivation rules cannot be redefined. A handy alterna-
tive is to define the derivation rule by means of defining operations, as ex-
plained in Chap. 8. Defining operations (like any other operation) can be 
redefined in the subtypes. In the above example, the four operations would 
be 

Fig. 10.14. The derivation rule of salary depends on the contract type of the 
employee
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context Employee::salary():Money 
body: (abstract)  

context SalariedEmployee::salary():Money 
body: flatSalary 

context HourlyEmployee::salary():Money 
body: hourlyRate * hoursWorked 

context CommissionedEmployee::salary():Money 
body: commissionRate * sales 

It is enlightening to compare these four rules with a single rule defined 
in Employee: 
context Employee::salary():Money 
  body: if self.oclIsTypeOf(SalariedEmployee) then 
  self.oclAsType(SalariedEmployee).flatSalary 
        else  
          if self.oclIsTypeOf(HourlyEmployee) then 
    self.oclAsType(HourlyEmployee).hourlyRate *     
                 self.oclAsType(HourlyEmployee).hoursWorked 
          else 
       self.oclAsType(CommissionedEmployee). 
               commissionRate * 
                 self.oclAsType(CommissionedEmployee).sales 
          endif 
        endif 

10.4.6 Redefining a Base Relationship Type as Derived 

UML allows a base relationship type R(p1:E1, …, pn:En) to be redefined as 
a derived type in a subtype of a participant. Figure 10.15 shows two exam-
ples of this. In general, the association CanTeach and the attribute salary 
of teachers are base. However, for specialist teachers, both are derived. A 
specialist teacher can teach any course of his specialty, and his salary is 

{redefines course}
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Fig. 10.15. CanTeach and salary of Teacher are redefined as derived types
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given by the attribute salary of Specialty. We express these redefinitions 
by redefining the association and the attribute and marking them as de-
rived. The derivation rules are 
context SpecialistTeacher::course:Course 

derive specialty.course 
context SpecialistTeacher::salary:Money 

derive specialty.salary 

It is worth noting that a base relationship type redefined in a subtype as 
derived becomes hybrid. In the above example, the association CanTeach 
and the attribute salary of teachers are now hybrid. Their population is 
given by the above derivation rules and the explicit assignments of courses 
and salaries for the nonspecialist teachers. 

10.5 Constraint Specialization 

Sometimes, a constraint defined in an entity type is strengthened in some 
subtype. This is called constraint specialization. The idea is to replace a 
constraint φ of the parent type with a stronger one φ′ such that φ′ implies φ. 

Constraint specialization can be formalized in logic as follows. Let E 
and E′ be entity types such that E′ IsA E. Let IC and IC′ be condition con-
straints targeted at E and E′, respectively: 

 IC: E(e) → ϕ(e) 
 IC′: E′(e) → ϕ′(e) 

If 

 ϕ′(e) → ϕ(e) 

then we say that IC’ is a refinement of constraint IC in E′. 
In UML, constraints cannot be specialized. The instances of a subtype 

inherit the constraints that must be satisfied by the instances of the super-
type. Of course, a subtype may add new constraints, but it is not possible 
to specialize or redefine a constraint defined in a supertype. 

Constraint specialization is possible when constraints are represented by 
operations. According to one of the basic principles of object orientation, 
when a constraint operation defined in a supertype E is redefined in a sub-
type E′, the instances of subtype E′ must satisfy the constraint as specified 
in E′, and not as specified in E. The instances of E which are not instances 
of E′ must satisfy the constraint as specified in E. 

Consider the schema shown in Fig. 10.16. Committee has an attribute 
maxNumberOfMembers, which indicates the maximum number of mem-
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bers that a committee is allowed to have at any time. This number is de-
fined when a committee is created, although it may be changed later. In 
general, the value of this attribute must be less than 100, but for Task-
Force, a subtype of Committee, the value of that attribute must be less than 
10. Similarly, for a Subcommittee, a subtype of Committee, the value of 
this attribute must not be greater than that of its parent committee. Figure 
10.16 shows the condition constraint operation validMaximum, defined in 
Committee and redefined in TaskForce and in Subcommittee. The formal 
specification of these operations in OCL might be 
context Committee::validMaximum():Boolean 

body: maxNumberOfMembers < 100 
context TaskForce::validMaximum():Boolean 

body: maxNumberOfMembers < 10 
context Subcommittee::validMaximum():Boolean 

body: maxNumberOfMembers • parent.maxNumberOfMembers 

A potential ambiguity arises in the particular case of a constraint opera-
tion defined in a supertype E that is redefined in n overlapping subtypes 
E1, …, En. The natural and declarative interpretation is: when an entity e is 
an instance of two or more subtypes E1, …, En that redefine the same con-
straint defined in a supertype E, the entity e must satisfy the constraint 
specified in all subtypes of which e is an instance. Figure 10.16 shows an 
example of this. A particular committee com may be both a task force and 
a subcommittee. In this case, the semantics is that com must satisfy the 
constraint validMaximum as specified in TaskForce and in Subcommittee. 

Fig. 10.16. Examples of constraint specialization
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10.6 Specialization/Generalization of Relationship Types 

10.6.1 IsA and Gens Between Relationship Types 

IsA and Gens relationships between relationship types are similar to those 
between entity types. Here, we comment on the IsA relationship; the exten-
sion to the Gens relationships is easy.  

A relationship type R′ is a specialization of a relationship type R if R′ 
has the defining properties of R and others. R′ is more specialized because 
it contains more defining properties than does R. The two relationship 
types R and R′ must have the same degree. 

Figure 10.17 shows two examples of relationship type specialization, 
taken from the Cyc ontology. An agent has ownership in a thing if it owns 
part of it or the whole thing. An agent owns a thing if it has full ownership 
of the thing. Therefore, Owns IsA HasOwnershipIn.  

Similarly, two agents do business with each other if they at least occa-
sionally negotiate to buy or sell products or services from one other. One 
agent sells to another if it sells goods or services to it. Therefore, SellsTo 
IsA DoesBusinessWith. 

In terms of the populations, R′ IsA R is an inclusion constraint of R′ in R: 
at any time, the instances of R′ are also instances of R. Naturally, there 
may be instances of R which are not instances of R′. Formally, if R(p1:E1, 
…, pn:En) and R′(p′1:E′1, …, p′n:E′n) are relationships types such that R′ IsA 
R, then in logic we have 

 R′(e1, …, en) → R(e1, …, en) 

Fig. 10.17. Two examples of relationship type specialization
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When a relationship type R′ specializes another R, every participant p′1 
of R′ corresponds to a participant pi of R, and for each participant there 
must be a specialization E′i IsA Ei.  

In UML, associations can be specialized, but attributes cannot. Associa-
tion specialization is represented graphically in the same way as entity type 
specialization (see Fig. 10.17). 

10.6.2 Reification and Specialization 

We know that a relationship type R can be reified into an entity type E. 
Assume that we have another relationship type R′ reified into E′ and such 
that R′ IsA R. Then, the question is: Does R′ IsA R imply that E′ IsA E? Or, 
similarly, does E′ IsA E imply that R′ IsA R?  

The answer is affirmative. The entity type E and the relationship type R 
reified by it are the same concept seen from two different perspectives. 
Therefore, a specialization of R induces a specialization of E, and vice 
versa. 

Figure 10.18 shows an example in UML. There are several groups in a 
company, and employees may be members of them. Each membership has 
a starting date. Committees are groups, and employees may chair them. 
Every chairmanship has an appointment date. “To chair” is a specialization 
of “To be a member”; therefore, Chairmanship is a specialization of Mem-
bership. The two specializations are the same, and only one must be shown 
in the diagrams. In general, it seems preferable to show the specialization 
of the entity types (association classes), as is done in Fig. 10.18. 

Fig. 10.18. Example of specialization of association classes in UML
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10.7 Bibliographical Notes 

The concepts of specialization, generalization, and taxonomy have a long 
tradition in philosophy and the natural sciences. Meyer (1997, Appendix 
24.15) gave a short account of the history of these concepts.  

Taxonomies have been thoroughly studied and used in artificial intelli-
gence. (Quillian 1968) is considered to be a seminal, pioneering work. 
Since then all knowledge representation languages have included, to some 
extent, the concepts of specialization, generalization, and taxonomy. As is 
often the case, not everybody has attributed the same meaning to the IsA 
relationship. (Brachman 1983) is a classic text that surveys the many 
meanings ascribed to IsA.  

Two workshops held in 1989, one in Europe and the other in the USA, 
were centered on taxonomies. (Lenzerini et al. 1991) and (Sowa 1991) are 
the proceedings. These proceedings reflect the state of the art at that time. 

A problem that has received a lot of attention is, in our terms, the auto-
matic placement of a derived entity type in a taxonomy on the basis of an 
analysis of its derivation rule. Woods (1991) provided an overview of this 
problem and its possible solutions. In the field of conceptual modeling of 
information systems, the problem has received less attention, because it is 
assumed that the conceptual modeler manually places the entity type in the 
taxonomy. 

Smith and Smith (1977) were probably the first to study generalization 
in the context of database modeling. All the conceptual models and lan-
guages that have appeared after that time include the concepts of speciali-
zation, generalization, partition, and taxonomy, to varying degrees. We 
would like to mention particularly  

• Taxis (Mylopoulos et al. 1980, Borgida et al. 1984); 
• IFO (Abiteboul and Hull 1987); 
• ERT (Theodoulidis et al. 1992); 
• NIAM (Nijssen and Halpin 1989) and its variants (Halpin and Proper 

1995a); 
• the work of Martin and Odell (1995); 
• the family of languages called Description Logics (Borgida 1995). 

The equivalence between explicit subtypes and explicit dimension at-
tributes was discussed by Batini et al. (1992), Assenova and Johannesson 
(1996), Poulovassilis  and McBrien (1998), and Halpin (2001).  

Smith and Smith (1977), Champeaux et al. (1993), Wieringa et al. 
(1995), and Martin and Odell (1995) recommended the use of partitions in 
conceptual schemas. 
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Valid type configurations were presented in Olivé et al. (1999). A re-
lated topic, valid type configuration transitions, will be studied in Chap. 
14; for a general treatment see (Wieringa et al. 1995, Norrie et al. 1996, 
Olivé et al. 1999).  The relationship between taxonomic constraints and de-
rivability was presented by Olivé and Teniente (2002). 

Participant refinement and cardinality constraints strengthening have 
been studied in many publications. We mention especially the works by 
Mylopoulos et al. (1980), Brachman and Schmolze (1985), Champeaux et 
al. (1993, Chap. 7), Cook and Daniels (1994, Chap. 3), Martin and Odell 
(1995, Chap. 10), and Analyti et al. (1997). The presentation in this chap-
ter is based on Costal et al. (2001). For an analysis of the relationship be-
tween taxonomic constraints and association redefinition see (Costal and 
Gómez 2006). Derivability redefinition was mentioned by Ceri and Frater-
nali (1997, Chap. 11).  

Calvanese and Lenzerini (1994) formulated the problem of the interac-
tion between IsA and cardinality constraints and provided a method for 
checking the satisfiability of a schema.  

Constraint specialization and exceptions have not yet attracted much at-
tention in conceptual modeling. A general framework was presented in 
(Wieringa et al. 1991). The presentation in this chapter is based in (Olive 
2003b). 

10.8 Exercises 

10.1 Browse your favorite dictionary and select three concepts that could 
be entity types and are a specialization of other concepts. List the proper-
ties added in each case. 
 
10.2 Give ten subtypes of Person and show the specialization relationships 
between them. At least one of these subtypes must be of multiple speciali-
zation, and at least one must be derived by intersection.  
 
10.3 Give your own example of each of the four kinds of generalization.  
 
10.4 WordNet is an online lexical database that contains a very large num-
ber of English words, organized in synsets. Among the information pro-
vided by WordNet for each noun (concept), there are its supertypes (hy-
pernyms) and subtypes (hyponyms). Browse WordNet 
(http://www.cogsci.princeton.edu/~wn/) and try to find a noun and its di-
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rect and indirect supertypes and subtypes. Can you imagine some applica-
tion of WordNet in conceptual modeling? 
 
10.5 Consider the following schema: 

 P1 = Magnitude Partd Power, Speed, Volume 
 P2 = Unit Partd PowerUnit, SpeedUnit, VolumeUnit 
 R1 = ExpressedIn(Magnitude, Unit) 
 R2 = HasValue(Magnitude, value:Decimal) 

Define the refinements of R1 that are necessary in order to require that a 
power, speed, or volume magnitude be expressed in a power, speed, or 
volume unit, respectively. 
 
10.6 Consider a system that stores many crosswords and their clues (or 
definitions) and solutions. Each crossword is identified by a number. A 
crossword is a rectangular grid of black and white squares; the aim is to fill 
in the white squares with letters, forming words reading across and down, 
by solving clues which yield the words. Each white square is part of a 
horizontal and/or a vertical word. There may be grids of different size. The 
black squares are used to separate words. See the entry in Wikipedia for 
more details and the variants. Assume that the squares in which answers 
begin are numbered; the clues and their solutions are then referred to by 
these numbers and a direction, for example “1Across” or “17 Down”. 

Define the structural schema corresponding to this system. It must be 
possible to display a crossword from the information stored in the informa-
tion base. The schema must include the entity types Row, Column, Square, 
BlackSquare, and WhiteSquare. Show the instantiation of your schema 
corresponding to an example of a small crossword, including the clues and 
the solution. You must define all the integrity constraints and derivation 
rules that are necessary. Ensure that there is a clue for each word, and that 
the number of letters in the solution of each clue is the same as the number 
of white squares in the sequence (or entry) where they are placed. 



11 Domain Events 

In the preceding chapters of this book, we studied the structural part of a 
conceptual schema, that is, the structural schema. In this chapter, we start 
the study of the behavioral part, called the behavioral schema. 

The structural schema defines the types of the facts contained in the in-
formation base. These facts change over time, but they cannot change in 
any arbitrary way. Only some changes of the information base are permis-
sible. These changes are called domain events. The definition of the do-
main event types is the most important part of the behavioral schema. 

In the first section of this chapter we analyze the concept of domain 
event. There are other kinds of event, but they will be studied in the next 
chapter. In Sect. 11.2, we explain that domain events can be seen as enti-
ties, and we study how to represent them in the conceptual schema and in 
the information base. An important part of a behavioral schema is dedi-
cated to defining the constraints and effects of events. In Sect. 11.3, we 
explain how to define domain event constraints. The effects of domain 
events can be defined using either of two approaches: the postcondition 
and procedural approaches. These are explained in Sects. 11.4 and 11.5, 
respectively. In Sect. 11.6, we explain that the structural schema must be 
consistent with the domain event types.  

As we have done in most of the preceding chapters, we sketch here the 
representation of the behavioral schema in the logic language, and give 
much more detail of its representation in the UML.  

Our main examples in this chapter (and the next one) will be about a 
material requirements planning (MRP) system. Such systems serve to 
manage material requirements in a manufacturing process. However, we 
shall consider only an elementary version, one that is not representative of 
a full-fledged MRP system. The details will be introduced where they 
arise. 
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11.1 Domain Events as Sets of Structural Events 

As we already know, an information system maintains a representation of 
the state of a domain in its information base. The state of a domain at any 
given point in time is the set of instances of the relevant entity and rela-
tionship types that exist in the domain at that time. The relevant entity and 
relationship types are those defined in the conceptual schema. 

The representation of the state of the domain in the information base is 
not static. Most domains change over time, and therefore their state 
changes too. When the state of a domain changes, the information base 
must change accordingly. Of course, a domain cannot change in an arbi-
trary way. Only some changes are acceptable. The acceptable changes are 
called domain events. This concept (of a domain event) can be defined pre-
cisely in terms of a more basic concept, called a structural event, which we 
define in the following. 

11.1.1 Structural Events 

We say that there is a change in the domain state between times t1 and t2 if 
the domain state at t1 is different from that at t2. However, in conceptual 
modeling we are mostly interested in changes between consecutive time 
points. We say that the state of the domain at time t changes if the domain 
state at that time, t, is different from the domain state at the previous time, 
t - 1. Both states must satisfy all static constraints. 

A state change is a set of one or more structural events. A structural 
event is an elementary change in the population of an entity or relationship 
type1. The precise number and meaning of structural events depend on the 
conceptual modeling language used. To give an intuitive idea of the mean-
ing, let us assume for the moment a language that has only the concepts of 
entity and relationship types. In this language, there are four kinds of struc-
tural event: 

• Entity insertion. An entity insertion structural event occurs at time t if an 
entity e is an instance of some type E at t, and e was not an instance of E 
at time t - 1.  

                                                      
1 At the information base level, structural events are elementary actions that insert 

a fact to the information base or remove a fact from it. In a relational database, 
structural events correspond roughly to the operations of insertion into, deletion 
from, and updating of a relation.  
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• Entity deletion. An entity deletion structural event occurs at time t if an 
entity e was an instance of some type E at time t - 1, and e is not an in-
stance of E at t. 

• Relationship insertion. A relationship insertion structural event occurs at 
time t if there is a relationship instance of some type R at t, and that rela-
tionship was not an instance of R at time t - 1. 

• Relationship deletion. A relationship deletion structural event occurs at 
time t if there is a relationship that was an instance of some type R at 
time t - 1, and is not an instance of R at t. 

As an example, consider the first schema fragment for our MRP system, 
shown in Fig. 11.1. As can be seen, the information base includes, among 
many other things, the instances of the existing products and, for each of 
them, relationships2 with: 

• The vendor that supplies the product. We shall assume that all products 
are purchased (i.e. there are no manufactured products). 

• The purchase orders issued to replenish the stock for the product. A 
purchase order may be a scheduled receipt (not yet received) or a 
received order. 

• The requirements (customer orders) for the product. We are not 
interested in which customers require the product. 

• The product number that identifies the product. 
• The current quantity on hand of the product. 
• The minimum quantity of the product that can be ordered from its 

vendor. 
                                                      
2 Recall that in UML relationship types may be attributes or associations. 
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• The total expected receipts of the product (a derived attribute, defined as 
the sum of the quantities of the scheduled receipts). 

When the company starts dealing with a new product, the domain state 
changes. This change consists of the following six structural events: 

• The insertion of the corresponding entity into Product.  
• The insertion of the corresponding relationship into the Supplies 

association. 
• The insertion of the corresponding values into the three base attributes 

productNo, quantityOnHand, and orderMinimum.  
• The insertion of the corresponding value (zero) into the derived attribute 

totalExpectedReceipts.  

Another change in our domain state occurs when the material ordered 
by a scheduled receipt is received. A scheduled receipt is an order for ma-
terial to replenish the stock. When a scheduled receipt is received, the 
change in the domain state consists of the following eight structural events: 

• The insertion of the received order into ReceivedOrder. 
• The insertion of the corresponding value into the attribute receptionDate 

of ReceivedOrder. 
• The deletion of the received order from ScheduledReceipt. 
• The deletion of the corresponding value from the attribute dueDate of 

ScheduledReceipt. 
• The update (deletion followed by insertion) of the attribute 

quantityOnHand of Product (the quantity on hand of the received 
product is increased). 

• The update of the derived attribute totalExpectedReceipts of Product. 

The number and semantics of the structural events depend on the language 
used. In many languages, an update of a single-valued attribute is consid-
ered as a single structural event, and not two as above. Some languages as-
sume that a structural event of entity deletion includes the deletion of all its 
attributes. The structural events of UML will be presented in Sect. 11.5. 

Continuing with our simple language, for each entity or relationship 
type, there are two structural event types: insertion and deletion. These 
event types are called structural because they are completely determined 
by the structural part of a conceptual schema. Structural event types are not 
explicitly defined by the conceptual modeler. Their definition is implicit. 

The concept of derivability  (base, derived, or hybrid) applies also to 
structural event types. The derivability of a structural event type is the 
same as that of the corresponding entity or relationship type.  
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Base structural events must be communicated by the users, in the way 
that will be explained in the next sections and chapter.  A system has no 
other means of knowing the base structural events that happen at any time 
point. An example is an insertion into the Vendor entity type. 

In contrast, derived structural events can be inferred when needed by the 
system from the base structural events, using the derivation rules of the 
corresponding entity or relationship type. For example, the insertion and 
deletion of values for the attribute totalExpectedReceipts of Product can be 
inferred by the system from the insertions into and deletions from Sched-
uledReceipt, using the derivation rule of that attribute. 

11.1.1.1 Structural Events for Permanent and Constant Types 

The instances of a permanent entity type E never cease to be instances of 
it. Therefore, no state change can include instances of the structural event 
type corresponding to deletions from E. In our example, ReceivedOrder is 
a permanent entity type. Once an order has been received, it remains as 
such forever. No state change can include instances of structural events 
that delete orders from ReceivedOrder. 

The instances of a constant entity type E are the same at all times. Nei-
ther new instances can be added to E nor can instances be removed from it. 
Therefore, no state change can include instances of the structural event 
types corresponding to insertions into and deletions from E.  

There are no structural events related to data types, because data types 
are constant and immutable. 

A similar reasoning applies for permanent and constant relationship 
types. In our example, the reception date of ReceivedOrder is constant. 
When an order is received (becomes an instance of ReceivedOrder), its re-
ception date is given and cannot be changed later. Therefore, no state 
change can include instances of structural events that add, delete, or update 
reception dates of existing received orders. 

11.1.2 Domain Events 

A state change may be simple or composite. A state change is simple when 
it consists of only one structural event. A composite state change consists 
of two or more structural events. Most state changes are composite. The 
state change corresponding to a new product is composite, because it con-
sists of six structural events.  

A domain event is a state change that consists of a nonempty set of 
structural events that are perceived or considered a single change in the 
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domain. A domain event is a state change such that the states before and 
after the change satisfy all static constraints, and the change is permissible. 
The time at which the change occurs is the occurrence time of the event.  

A simple state change can be only one domain event. In general, a com-
posite state change may be one or more domain events. 

A “new product” is an example of a domain event, because the set of six 
structural events it consists of is seen as a single change. If we remove any 
one of the six structural events, the resulting set cannot be perceived as a 
domain event, because there is something “missing” and, on the other 
hand, the resulting state of the domain would not satisfy all integrity con-
straints. 

Some conceptual models consider that at any time point there may occur 
at most one domain event. In general, however, two or more domain 
events may occur at the same time. When this happens, the state change is 
composite and consists of more than one domain event. For example, a 
company can start dealing with two products at the same time. In this case, 
the two corresponding domain events will have the same occurrence time. 

11.2 Representation in an Information System 

Domain events may be represented in several ways in an information sys-
tem. In this book, we represent domain events as entities. In the next chap-
ter, we shall see that other kinds of event can be represented by entities 
too. This allows one to define relationships between events and other enti-
ties, integrity constraints, derivation rules, etc. in a way very similar to that 
for ordinary entities. In what follows, we explain first how to define do-
main events as entities, and then study their representation in logic and in 
UML. We assume current-state (nontemporal) information bases.  

11.2.1 Domain Events as Entities 

A domain event is a set of one or more structural events that occur at some 
time point. Most domain events are caused by actions performed outside 
the information system, and they must be communicated to the system by 
the users. We might then conclude that, in order to communicate a domain 
event, users need to give its corresponding set of base structural events.3 

                                                      
3 Derived structural events can be inferred by the system and, therefore, they need 

not be communicated by the users. 
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Such a conclusion would be acceptable in some cases, but it is impractical 
in many others.  

In general, as we explain below, it is much more practical to view a do-
main event as an entity, and to define a mapping that gives, for each do-
main event, its set of base structural events. In this book, we view domain 
events as entities, called event entities. 

For example, consider the domain event corresponding to the reception 
of a scheduled receipt. If users have to communicate the event by giving 
all its base structural events, then they need to know which entity and rela-
tionship types are changed by the reception (scheduled receipts, received 
orders, reception and due dates, and quantity on hand of products), and 
they have to give the corresponding insertions and deletions. In this par-
ticular example, the users would have to tell the system about: 

• The insertion of the received order into ReceivedOrder. 
• The insertion of the corresponding value into the attribute receptionDate 

of ReceivedOrder. 
• The deletion of the received order from ScheduledReceipt. 
• The deletion of the corresponding value from the attribute dueDate of 

ScheduledReceipt. 
• The update (deletion followed by insertion) of the attribute 

quantityOnHand of Product (the quantity on hand of the received 
product is increased). 

Clearly, if the number of types affected is large, or is not obvious, or is 
likely to change, users will find such communication awkward. 

Event entities are instances of domain event types. A domain event type 
is a concept whose instances, at a given time, are identifiable domain 
events that occur at that time.  

Like any other entity, event entities may participate in relationships. The 
characteristics of an event entity are the relationships in which it partici-
pates. In particular, there is one relationship between each event entity and 
a time point, representing the event occurrence time. We assume that the 
characteristics of an event entity are determined when the event occurs, 
and are immutable. 

For example, we could define the domain event type OrderReception. 
Each instance corresponds to a particular reception of a scheduled receipt, 
which occurs at some time. In this example, the characteristic of the event 
is simply the order received. It is much easier for a user to tell the system 
that “an OrderReception event of scheduled receipt SR has occurred” than 
to explicitly tell it about the above-mentioned structural events. 
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In general, the characteristics of a domain event must include relation-
ships with the entities involved in the event. For example, an instance of 
OrderReception has an association with the scheduled receipt being re-
ceived. We have two options here:  

1. The characteristics include also the external identifiers of the entities 
involved, from which the relationships with them can be derived. 

2. The characteristics include only the relationships with the entities in-
volved, without the external identifiers.  

For domain events, the latter is preferred because it is simpler and more 
general. 

Each event entity denotes a set of structural events, called the event ef-
fect. Event entities may be seen as labels for event effects. The correspon-
dence between an event entity and its effect is given by a mapping expres-
sion, which maps each instance of a given domain event type to the 
corresponding event effect, taking into account the characteristics of the 
event and the information base. We study how to define these expressions 
in Sects. 11.4 and 11.5. 

In the above example, an informal mapping expression could be “An 
OrderReception event of a scheduled receipt SR maps to the following 
structural events: 

• The insertion of SR into ReceivedOrder. 
• The insertion of the current date as the value for the attribute 

receptionDate. 
• The deletion of SR from ScheduledReceipt. 
• The removal of the value for the attribute dueDate of SR. 
• If the product corresponding to SR is P and the quantity of SR is Q, and 

the current quantity on hand of product P is QOH, then replace it 
(deletion followed by insertion) by QOH + Q.” 

This expression is defined only once in the behavioral schema. It is as-
sumed that the system will apply it every time an OrderReception event 
occurs. Note that with the use of mapping expressions, users do not need to 
know about the event effect. If, for some reason, the mapping expression 
has to change, the users need not be aware of it. 

Domain event types have a name, which must be unique in a schema. 
The importance of choosing good names cannot be overstated. Naturally, 
the name should be agreed on and be well understood by the people in-
volved. A useful rule is that the name should be a singular noun, possibly 
with adjectives. When this rule is followed, if Ev is the name of a domain 
event type, then the following sentence has meaning: 
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An instance of this domain event type is an Ev event 

The application of the rule to OrderReception gives 

An instance of this domain event type is an OrderReception event 

which has a clear meaning. 

11.2.2 Logical Representation 

In the logical representation, domain event types are represented by unary 
predicates, where the argument is a symbol that denotes an event entity. 
The schema will also include relationship types representing the character-
istics of events. Recall that, in logic, relationship types are represented by 
predicates of arity two or more. We shall assume the existence of a prede-
fined binary predicate OccurrenceTime, which gives the occurrence time 
of each event.  

At every time point, the information base contains an arbitrary symbol 
for each domain event entity that has occurred at that time. We say that the 
event entity is represented by that symbol in the information base, or that 
the symbol denotes the event entity. The type of an event entity is given by 
an atomic formula of the corresponding predicate. Thus, if A is an event 
entity instance of event type Ev, the information base will contain the for-
mula Ev(A). 

For example, the logical representation of the domain event type Or-
derReception is 

• a unary predicate OrderReception; 
• a predicate OrderReceived (OrderReception, ScheduledReceipt). 

A particular order reception will be represented in the information base as 
an instance of each of the above two predicates, and of OccurrenceTime. 

In nontemporal information bases, event entities exist in the information 
base only during the period of time in which they occur. It is assumed that 
events are instantaneous, that the response of the system to them is also in-
stantaneous, and that after the response (and before the next time tick), 
events are removed from the information base. Current-state information 
bases do not remember past events. 
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11.2.3 UML Representation 

In UML, domain event types can be represented by a special kind of entity 
type4. We shall use the stereotype «event» for them. An entity type with 
this stereotype will define an event type. Event characteristics may be de-
fined as attributes or associations.  

Figure 11.2 shows a draft definition of NewProduct, which we shall re-
fine later on. The attribute productNo gives the number of the new prod-
uct. The association with Vendor gives the vendor of the new product. The 
attribute orderMinimum gives the minimum quantity of this product that 
can be ordered from its vendor. The attribute time gives the occurrence 
time. It is assumed that the occurrence time is the time at which the system 
knows of the event. 

Event characteristics are immutable. This means that they are constant 
with respect to the event. For presentation reasons, the constant-constraint 
stereotype will not be shown in the diagrams in this chapter.  

Like any other entity type, domain event types may be specialized 
and/or generalized. This allows us to build a taxonomy of domain event 
types, where common elements are defined only once.  

In particular, it is convenient to define a root entity type named Event. 
All event types are direct or indirect subtypes of Event. In fact, Event is de-
fined as being derived by union of their subtypes. We define for this event 
type the attribute time, which gives the occurrence time of each event. We 
define also the operation effect, whose purpose will be made clear later. 
This operation has no parameters or result type. For simplicity, we assume 
that all subtypes of Event are event types and, therefore, it is not necessary 
to stereotype them as «event».  

In medium-to-large taxonomies, with many domain event types and 
other kinds of event type, it is convenient to generalize all domain event 

                                                      
4 UML includes a concept of an event, but it is not adequate when events are seen as enti-

ties, which is the view we take here. 
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types into a common type. To this end, we define an event type Do-
mainEvent as shown in Fig. 11.3. DomainEvent is the direct or indirect su-
pertype of all domain event types. Each particular domain event type must 
be defined as a subtype of DomainEvent.  
 

11.3 Domain Event Constraints 

As we have seen, a domain event is a set of one or more structural events 
that occur at a time point. However, not all sets of structural events are 
domain events. A set StrEv of structural events is a domain event if it is an 
acceptable change in the domain. This means that, in general, the set StrEv 
has to satisfy a number of conditions involving its elements and/or the 
state of the information base before the occurrence of the event. It is as-
sumed that the states of the information base before and after the occur-
rence of the domain event satisfy all defined static constraints. 

Let DomEv be a domain event represented by an entity EvEnt, with a 
mapping expression which maps EvEnt to its effect (the set of structural 
events) StrEv. A domain event constraint of EvEnt is a condition that the 
characteristics of EvEnt and/or the state of the information base before the 
occurrence of DomEv must satisfy in order to guarantee that StrEv is an 
acceptable change. For example, an event constraint for NewProduct (Fig. 
11.2) is that there does not exist in the information base a product with the 
same productNo.  

A domain event entity that violates one of its constraints represents an 
event that cannot (or is not allowed to) occur in the domain. The likely 
cause of the violation is that the characteristics are incorrect. For example, 

Fig. 11.3. Top level taxonomy of event types
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if an instance of NewProduct violates the above constraint, it is probably 
because its productNo is incorrect. 

The set of event constraints must guarantee that if EvEnt satisfies all of 
them, then the mapping expression will map EvEnt to a nonempty set of 
structural events StrEv that is an acceptable change in the state of the do-
main.  

In this book, we deal only with current-state information bases. This 
means that an event constraint involves only the state of the information 
base before the occurrence of the event. In the case of temporal informa-
tion bases, event constraints may involve any previous state of the infor-
mation base. 

11.3.1 Logical Representation 

In the logical representation of a schema, an event constraint is a closed 
formula involving facts about an event and other facts in the information 
base in the state before the occurrence of the event. Like any other con-
straint, event constraints can be expressed by inconsistency predicates. 

For example, consider the event type NewProduct, and the constraint 
that there does not exist a product with the same productNo. Assume that 
the existing products, before the occurrence of the event, are given by a 
predicate Product, and that their product numbers are represented by the 
binary predicate ProductWithPNo(Product, ProductNo). If we represent 
the constraint by means of the inconsistency predicate ProductExists, its 
definition is 

 ProductExists(prNo) ↔  
NewProduct(newPr),  
ProductNo(newPr, prNo), 
Product(prod),  
ProductWithPNo(prod, prNo) 

That is, there is a ProductExists inconsistency if an instance newPr of the 
event type NewProduct has a product number prNo equal to that of an ex-
isting instance prod of the entity type Product. 

11.3.2 UML Representation 

Domain event constraints are always creation-time constraints because 
they must be evaluated when the events occur. In UML, these constraints 
are best expressed by constraint operations and formalized in OCL. 



11.3 Domain Event Constraints      259 

As an example, consider a NewProduct event and the constraint that 
there does not exist a product with the same productNo.  This is an event 
constraint that we define by the constraint operation doesNotExist in New-
Product, as shown in Fig. 11.4. The specification in OCL is 
context NewProduct::doesNotExist():Boolean 
  body: not Product.allInstances()->  

         exists(productNo = self.productNo)  

Recall that the constraints that must be satisfied by the characteristics of 
an event are also event constraints. According to Fig. 11.4, the constraints 
that must be satisfied by an instance of NewProduct are: 

• It has a value for the productNo attribute, and this value is a string. 
• It has a value for the orderMinimum attribute, and this value is a natural 

number. 
• It is associated with an existing vendor. 
• The constraint defined by the operation doesNotExist. 

If an instance of NewProduct satisfies these four constraints, then the 
mapping expression (see below) will map it to a nonempty set of structural 
events that is an acceptable change in the state of the information base. 

Note that in Fig. 11.4 we have the unconstrained cardinality 

 Card(vendor; newProduct) = (0,∞) 

This means that several NewProduct events of the same vendor may occur 
at the same time. 

Fig. 11.4. Extension of Fig. 11.2 showing the event constraint doesNotExist
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11.4 Event Effects: The Postcondition Approach 

In this section, we start our study of the specification of the effects of do-
main events. As we already know, the effect of an event is a set of struc-
tural events, that is, a set of changes in the population of entity and rela-
tionship types defined in the structural schema. There are two main 
approaches to the definition of that set: the postcondition and the 
procedural (or structural-events) approach. In the former, the definition is a 
condition that satisfies the information base after the application of the 
event effect. In the latter, the definition is a procedure whose evaluation 
gives the corresponding structural events. The postcondition approach is 
the most widely used in conceptual modeling. We study the postcondition 
approach in this section, and the procedural approach in the next. 

In the postcondition approach, the effect of an event entity EvEnt is de-
fined by a condition C on the information base. The idea is that EvEnt 
leaves the information base in a state that satisfies C. The condition C is 
called the postcondition of EvEnt because it defines the state of the infor-
mation base after the change. Given that EvEnt is a domain event, the state 
after the occurrence of the event must be different from the state before the 
occurrence. It is assumed also that the state after the occurrence of the 
event satisfies all static constraints. Therefore, the effect of the event 
EvEnt is a state of the information base that satisfies the condition C and 
all static constraints. 

In general, the condition C involves:  

• facts of the state of the information base after the occurrence of the 
event; 

• the characteristics of the event; and 
• facts of the state of the information base before the occurrence of the 

event. 

Note that the postcondition approach does not require an explicit defini-
tion of the set of structural events corresponding to the event effect. In-
stead, it requires the definition of the condition C that the information base 
must satisfy after the occurrence of the event.  

The postcondition approach leaves to the designer the task of determin-
ing the set of structural events that achieve the desired state in the informa-
tion base. More precisely, the designer will have to determine a set of 
structural events at the database level that leave the database in the state 
corresponding to the desired state of the information base.  

In many cases, there is only one reasonable nonempty set of structural 
events that achieve this result. In other cases, however, there are several 
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such sets, and then the designer has the freedom to choose the one he pre-
fers. Note that satisfaction of the domain event constraints must guarantee 
that there will be at least one possible set. 

11.4.1 Logical Representation 

In the logical representation of the schema and the information base, the 
postcondition is a closed formula that the information base must satisfy. 
For example, consider the event NewRequirement, shown in Fig. 11.5. The 
effect of this event is that a new instance of the entity type Requirement 
(see Fig. 11.1) has been created, with the appropriate values for its attrib-
utes and association. Using an ad hoc notation, we can define this effect as 
follows: 

 Event:  
  NewRequirement(nr) 
 Characteristics: 
  RequiredOn(nr,d) 
  RequiredQty(nr,qty) 
  RequiredProduct(nr,p)   
 Post:  
  ∃r(Requirement′(r), 
            not Requirement(r), 
            DateRequired′(r,d), 
            QuantityRequired′(r,q), 
            ProductRequired′(r,p)) 

Fig. 11.5. Definition of the domain event type NewRequirement
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In the above definition, we refer to the facts holding immediately before 
and after the event effect by unprimed and primed predicates, respectively. 
The postcondition states that after the event effect, the information base 
includes: 

• an instance (r) of Requirement, 
• such that r was not an instance of Requirement prior to the occurrence 

of the event, and 
• with the appropriate facts of the predicates DateRequired, 

QuantityRequired, and ProductRequired. 

11.4.2 UML Representation 

In UML, we can represent the effect of a domain event in several ways. 
We shall describe one way here, which can be used as is, or as a basis for 
the development of alternative ways. 

We define a particular operation in each domain event type, whose pur-
pose is to specify the effect. To this end, we use the operation effect that 
we have defined in Event (see Fig. 11.3). This operation will have a differ-
ent specification in each event type. The postcondition of this operation 
will be exactly the postcondition of the corresponding event. We use OCL 
to specify these postconditions.  

Let us illustrate the use and the consequences of this approach by means 
of examples from our MRP system. The first example is the domain event 
type NewRequirement, shown in Fig. 11.5. The constraint validDate() 
states that a requirement must be required on a date greater than the date of 
the event’s occurrence time. The formal specification is 
context NewRequirement::validDate():Boolean 
  body: dateRequired > time.date 

The effect of one instance of NewRequirement is the addition of one in-
stance to the entity type Requirement (see Fig. 11.1). Therefore, in this 
case the specification of the effect operation is as simple as 
context NewRequirement::effect() 
  post: --There exists a new instance of Requirement 
    r.oclIsNew() and  
    r.oclIsTypeOf(Requirement) and 
    r.dateRequired = dateRequired and 
    r.quantity = quantity and 

  r.product = product  

We do not define preconditions in the specification of effect operations. 
The reason is that we implicitly assume that the events satisfy their con-
straints before the application of their effect. In our example, we assume 
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implicitly that the required date is valid. On the other hand, remember that 
the information base satisfies all static constraints before the occurrence of 
the event. 

In our example, the postcondition states simply that a new instance r of 
Requirement has been created in the information base, with the corre-
sponding values for its attributes and association. It is assumed also that, 
after the application of the effect, the information base will satisfy all con-
straints. Any implementation of the effect operation that changes the in-
formation base to a state that satisfies the postcondition and the static con-
straints is valid. 

An alternative specification of the effect could be 
context NewRequirement::effect() 
  post: --There exists a new instance of Requirement 
    Requirement.allInstances() -> one 
      (r:Requirement|  
         Requirement.allInstances@pre()->excludes(r) and 
         r.dateRequired = dateRequired and 
         r.quantity = quantity and 
         r.product = product)  

This specification illustrates that, in general, the postcondition involves 

• facts of the state of the information base after the occurrence of the 
event, such as Requirement.allInstances(); 

• the characteristics of the event, such as dateRequired; and 
• facts of the state of the information base before the occurrence of the 

event, such as Requirement.allInstances@pre(). 

Note that, in the above postconditions, the expressions 
r.oclIsNew() and r.oclIsTypeOf(Requirement) 

and 
Requirement.allInstances () -> one 

        (r:Requirement| 
                Requirement.allInstances@pre()->excludes(r))  

require that, in the new state of the information base, there is a new in-
stance (r) of the entity type Requirement. The reader may wonder whether 
it would be enough to require that there exists an instance of Requirement 
with the appropriate attributes. Such a postcondition could be 
context NewRequirement::effect() 
  post: --There exists a Requirement with the  
        --appropriate attributes 
    Requirement.allInstances()->exists  
      (dateRequired = self.dateRequired and 
       quantity = self.quantity and 
       product = self.product)  
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This postcondition is not satisfactory. The reason is that if the information 
base already contains a different requirement r′, then a set of structural 
events that changes the product, date required, and/or quantity of r′ to 
those for the event would be a valid implementation of the operation, but it 
does not correspond to the semantics of the event. 

The specification of the external event type NewProduct is similar (see 
Fig. 11.4), but raises a subtle point. We assume that there is a static con-
straint stating that the instances of Product are identified by the attribute 
productNo. The specification of the effect of NewProduct could be 
context NewProduct :: effect () 
  post: --There exists a new instance of Product 
    p.oclIsNew() and  
    p.oclIsTypeOf(Product) and 
    p.productNo = productNo and 
    p.quantityOnHand = 0 and 
    p.orderMinimum = orderMinimum and 
    p.vendor = vendor  

The subtlety lies in the event constraint doesNotExist(), which requires that 
there is not a product in the information base with the same productNo. 
When this constraint is in place, the newly created product (p) cannot con-
flict with any other existing product.  

The reader may wonder what would happen if the event constraint 
doesNotExist() had not been defined. The answer is that if there already 
exists a product p1 with the same productNo, then one option for the de-
signer could be to delete p1 and to replace the associations involving p1 by 
new ones involving p. In this way both the postcondition and the informa-
tion base constraint would be satisfied after the occurrence of the event. It 
is likely that this set of structural events would not be an acceptable 
change, and therefore we must keep the event constraint. 

Fig. 11.6. Definition of the domain event type OrderReception
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Another external event type that raises an issue that is worth considering 
is OrderReception (see Fig. 11.6). An instance of OrderReception occurs 
when a scheduled receipt is received. The event effect is that the scheduled 
receipt now becomes a ReceivedOrder (see Fig. 11.1), and that the quan-
tity on hand of the corresponding product is increased by the quantity re-
ceived. Therefore, the specification of effect() for OrderReception is 
context OrderReception::effect() 
  post:  
    --The order has been received 
    order.oclIsTypeOf(ReceivedOrder) and 
      order.oclAsType(ReceivedOrder).receptionDate =  
        time.date and 
    --The quantity on hand is increased 
    order.product.quantityOnHand =    
      order.product.quantityOnHand@pre + order.quantity 

The postcondition states that the purchase order order must be an in-
stance of ReceivedOrder. However, according to the referential constraint 
of Fig. 11.6, order was an instance of ScheduledReceipt before the effect 
of the event, and the postcondition does not state its removal. It seems that 
it might be acceptable to leave that purchase order as an instance of both 
ScheduledReceipt and ReceivedOrder. But this is not acceptable, because 
ScheduledReceipt and ReceivedOrder are disjoint, as indicated in Fig. 
11.1. Therefore, the only way left to the designer to satisfy both the post-
condition and the disjointness constraint is to remove the purchase order 
from ScheduledReceipt, which is what was intended. 

11.4.3 The Frame Problem 

It is not always easy to characterize an event effect by means of a condi-
tion. It may happen that several domain states satisfy a given condition, 
and that not all of them are valid characterizations of that effect. 

As a simple example, consider again the event type NewProduct, shown 
in Fig. 11.4. We reproduce its postcondition below: 
context NewProduct::effect() 
  post: --There exists a new instance of Product 
    p.oclIsNew() and  
    p.oclIsTypeOf(Product) and 
    p.productNo = productNo and 
    p.quantityOnHand = 0 and 
    p.orderMinimum = orderMinimum and 
    p.vendor = vendor  

This postcondition states clearly that, in the new state of the information 
base, there must be one new product (p), with the given attributes and as-
sociations. The designer/programmer has to write an implementation (a 
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method) of the effect operation that ensures satisfaction of the postcondi-
tion. One possible implementation, which seems sensible, consists in just 
inserting a new instance into Product, with the corresponding attributes 
and associations.  

But there are other implementations of effect that also satisfy the post-
condition, but do not seem acceptable: for example, one that proceeds as 
before (inserting a new instance into Product, with the corresponding at-
tributes and associations) but also deletes all instances of ScheduledRe-
ceipt. Clearly, this implementation satisfies the postcondition, but does 
other things that are not necessary. The change in the population of Sched-
uledReceipt is not necessary in this case. 

Therefore we need a means to specify what cannot change. At first 
glance, it seems that such specification is easy, but it is not. The problem is 
known as the frame problem. The frame problem is the problem of stating 
succinctly those parts of the information base that are not affected by an 
event, and that therefore they must remain unchanged. It is an old problem 
of the postcondition approach, for which there does not exist a satisfactory 
solution in the general case. 

In practice, the frame problem is greatly mitigated by the assumption of 
minimal set. It is assumed that the set of structural events is minimal in the 
sense that if any of them is removed from the set, then the resulting set 
does not achieve the desired state in the information base. In the above ex-
ample, this assumption rules out the possibility of an implementation that 
deletes the instances of ScheduledReceipt. 

11.5 Event Effects: The Procedural Approach 

We know that the effect of a domain event is a set of one or more struc-
tural events. The effect may be defined by an expression (procedure or 
method) whose execution produces that set. This way of defining an event 
effect is called the procedural or the structural-events approach. This ap-
proach is in contrast to the previous one, which defines a condition that 
characterizes the state of the information base after the event. In the proce-
dural approach, the new state of the information base is the previous state 
plus the entities or relationships inserted, and minus the entities or rela-
tionships deleted. 

In the procedural approach, the effect of an event entity EvEnt is defined 
by an expression written in some language. The idea is that the execution 
of a procedure yields the set StrEv of structural events defined by EvEnt. 
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The application of StrEv to the previous state of the information base pro-
duces the new state.  

It is assumed that the set StrEv is such that it leaves the information base 
in a new state that satisfies all the static constraints. Therefore, when defin-
ing the expression, one must take the existing constraints into account, and 
to ensure that the new state of the information base will satisfy all of them. 
This fact is seen as a disadvantage of the procedural approach with respect 
to the postcondition one. 

On the other hand, any implementation of the expression must be such 
that it produces exactly the set StrEv (or, more precisely, the implementa-
tion, seen at the conceptual level, must behave as if it produced StrEv). 
The designers/programmers do not have the freedom that they have with 
the postcondition approach. Their job is to implement the structural events 
given in StrEv in terms of creation, deletion, or modification operations of 
the implementation database. In this respect, some authors say that the 
procedural approach is less declarative (or more procedural) than the post-
condition one. 

The procedural approach does not suffer from the frame problem. The 
only changes allowed are those indicated in StrEv. This is an important ad-
vantage of the approach. In this section we sketch the representation of this 
approach in logic, and then we comment on its use in UML. 

11.5.1 Logical Representation 

We shall explain the logical representation of the procedural approach by 
means of a simple example. Consider the domain event type OrderRecep-
tion (see Fig. 11.6). It has only one characteristic (besides the occurrence 
time): 

ScheduledReceiptReceived (OrderReception, ScheduledReceipt) 

Using an ad hoc notation, a simple expression that defines the effect of 
an instance of OrderReception might be 

 Event: 
  OrderReception(oRec): 
 Characteristics: 
  ScheduledReceiptReceived(oRec,sr) 
 Locals: 
  ProductOrdered(sr,p), 
  QuantityOrdered(sr,q), 
  DueDate(sr,dD), 
  HasQOH(p,qoh) 
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 Insertions: 
  ReceivedOrder(sr), 
  HasQOH(p,qoh + q), 
  ReceptionDate(sr,CurrentDate) 
 Deletions: 
  ScheduledReceipt(sr), 
  DueDate(sr,dD), 
  HasQOH(p,qoh) 

In this expression, the first lines give names to the instance of OrderRecep-
tion (oRec) and to its characteristic (sr, the scheduled receipt just re-
ceived). The Locals part is used to give names to the entities related to the 
event or to its characteristics. Thus, p is the product ordered, q is the quan-
tity ordered, and qoh is the quantity on hand that we have of product p be-
fore the occurrence of the event.  

The structural events corresponding to the effect of oRec are given in 
the Insertions and Deletions parts. There are three insertions: the entity sr 
must be inserted into ReceivedOrder, the relationship (p,qoh + q) must be 
inserted into HasQOH, and relationship (sr,CurrentDate) must be inserted 
into ReceptionDate. There are also three deletions: the entity sr must be 
removed from ScheduledReceipt, the relationship (p,qoh) must be deleted 
from HasQOH, and the relationship (sr,dD) must be deleted from 
DueDate. 

Note that ScheduledReceipt and ReceivedOrder are disjoint (Fig. 11.1). 
Given that the effect of oRec includes the insertion of sr into ReceivedOr-
der, we need to specify also the deletion of sr from ScheduledReceipt.  

11.5.2 UML Representation 

In UML, the procedural approach means that we provide a method for the 
effect operations. The method is an expression whose execution yields the 
structural events. The method is written in some language, which may be 
informal, semiformal, or formal. If it is informal or semiformal, then the 
formal analysis of and reasoning about the resulting conceptual schemas is 
hindered. 

UML does not prescribe or provide any particular language yet.  OCL 
cannot be used for writing methods. In practice, most people use human 
languages for writing methods at the conceptual level. Graphically, the 
method may be shown (if needed) by means of a note attached to the cor-
responding effect operation. Figure 11.7 shows again the UML representa-
tion of OrderReception. The note attached to the effect operation describes 
the method in natural language. 
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However, UML defines the abstract syntax of a set of primitive actions, 
which may serve as a basis for the design of particular surface languages. 
We summarize below the primitive actions that correspond to our struc-
tural events. For each of them, we give a brief description of their intent 
and their main constraints.5  

There are three structural events related to entities and their types: 

• CreateObjectAction is an action that creates (a new symbol that repre-
sents) an entity and classifies it as an instance of the given entity type. 
The new object has no attribute values and participates in no links.   

•  ReclassifyObjectAction adds a set N (“new”) of entity types to a given 
entity e, and removes a set O (“old”) of entity types from that entity. Af-
ter the action is completed, e is an instance of its existing entity types 
and the entity types N given to the action; however, E is not an instance 
of the entity types O given to the action. Neither adding an entity type 
that duplicates an already existing one, nor removing an entity type that 
does not classify the input entity e, has any effect.  

• DestroyObjectAction is an action that destroys an entity. This action has 
no other effect.  

There are also three structural events related to attributes: 

• AddStructuralFeatureValueAction adds a value to an attribute. The se-
mantics of this action depends on the value of a boolean parameter (is-
ReplaceAll). If isReplaceAll is true, then the existing values of the at-

                                                      
5 For the complete details of these actions, see the official UML documents. 
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tribute are removed before the new value is added, except that if the new 
value already exists, then it is not removed under this option. If isRe-
placeAll is false, then adding an existing value has no effect. The se-
mantics is undefined for adding a value that violates the upper multiplic-
ity of the attribute. Note that the semantics of this action is that of an 
update when isReplaceAll is true. 

• RemoveStructuralFeatureValueAction removes a value from an attrib-
ute. Removing a value succeeds even when it violates the minimum 
multiplicity. Removing a value that does not exist has no effect. 

• ClearStructuralFeatureAction removes all values of an attribute. This 
action removes all values from an attribute in a single action, with no in-
termediate states where only some of the existing values are present. 

Associations have also three structural events: 

• CreateLinkAction creates a new link for an association. Recreating an 
existing link has no effect. The semantics is undefined for creating a 
link that violates the upper multiplicity of one of its association ends. 
When the association is reified, the action creates an instance of the rei-
fication type (association class), called a link object. There is a similar 
operation, CreateLinkObjectAction, which can be used to create link ob-
jects. 

• DestroyLinkAction destroys a link. Destroying a link that does not exist 
has no effect. When the association is reified the action destroys the link 
object. 

• ClearAssociationAction is an action that destroys all links of an associa-
tion in which a particular entity participates. This action is introduced to 
remove all links from an association in which an entity participates in a 
single action, with no intermediate states where only some of the exist-
ing links are present. 

For example, the structural events corresponding to the effect operation 
of OrderReception (Fig. 11.7) are: 

• ReclassifyObjectAction is applied to the scheduled receipt received sr. 
The entity sr is classified as an instance of ReceivedOrder and removed 
from ScheduledReceipt. 

• AddStructuralFeatureValueAction is applied to sr. The current date is 
added to the receptionDate attribute of sr. 

• AddStructuralFeatureValueAction is applied to p, the product corre-
sponding to sr. The attribute quantityOnHand of p is updated. 

As stated in the UML specification document, a surface action language 
would encompass both primitive actions and control mechanisms. In addi-
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tion, a surface language may map higher-level constructs to actions. For 
example, in a composition association where the deletion of an instance 
implies the deletion of all its components, the above actions require a De-
stroyObjectAction for the composite and another such action for each of 
the component instances. A surface language could choose to define a de-
lete-composition operation as a single unit as a shorthand for several dele-
tions that cascade across other associations. A particular surface language 
could implement each semantic construct one-to-one, or it could define 
higher-level, composite constructs to offer the modeler both power and 
convenience.  

11.6 Consistency with the Structural Schema 

The set of domain event types defined in the behavioral schema must be 
consistent with the structural schema. This consistency comprises three 
properties:  

• satisfiability of event constraints; 
• correctness of domain event types; 
• completeness of domain event types. 

In what follows we describe each property in turn. 
For each domain event type, there must be at least one consistent state 

of the information base and one set of values of the event characteristics 
such that the event constraints are satisfied. Otherwise, the instances of the 
event type could never occur. 

As an example of nonsatisfiable event constraint, assume that the do-
main event type OrderReception (Fig. 11.7) also includes the constraint 
context OrderReception::orderReceivedAlready():Boolean 
  body: order.oclIsTypeOf(ReceivedOrder) 

There is a contradiction between this constraint, the referential constraint 
that the order must be an instance of ScheduledReceipt and the disjoint 
constraint between ScheduledReceipt and ReceivedOrder (Fig. 11.1).  

The criteria for correctness of domain event types depend on the ap-
proach used in the specification of their effect. A domain event type speci-
fied using the postcondition approach is correct if, for each pair consisting 
of an event instance and a consistent state of the information base that sat-
isfy the event constraints, there exists at least one nonempty set of struc-
tural events that satisfies the postcondition and the static constraints. 

An example of an incorrect specification of the postcondition of Order-
Reception is 
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context OrderReception::effect() 
  post:  
    order.oclIsTypeOf(ReceivedOrder) and 

  order.oclAsType(ReceivedOrder).receptionDate =  
    time.date and 
  order.oclIsTypeOf(ScheduledReceipt) 

Given that ReceivedOrder and ScheduledReceipt are disjoint, this postcon-
dition cannot be satisfied.   

A domain event type specified using the procedural approach is correct 
if, for each pair consisting of an event instance and a consistent state of the 
information base that satisfy the event constraints, the resulting effect con-
sists of a nonempty set of structural events that leave the information base 
consistent. 

A set of domain event types {D1, …, Dn} is complete with respect to a 
structural schema if, for each structural event type Sj determined by that 
schema, there are one or more domain event types Di such that the effect of 
their instances includes instances of Sj. 

For example, the set of the three domain event types NewProduct, New 
Requirement, and OrderReception (Figs. 11.4, 11.5, and 11.6, respec-
tively) specified in this chapter is incomplete with respect to the structural 
schema shown in Fig. 11.1. There are several structural event types deter-
mined by the schema without instances in the effects of the domain event 
types, for example, insertion into and deletion from Vendor, and changes 
(deletion and insertion) to Supplies. 

In general, the consistency between a structural schema and a set of do-
main event types cannot be formally verified. It is part of the task of 
schema validation to ensure it. 

11.7 Bibliographical Notes 

Wand and Weber (1988) defined the necessary conditions an information 
system must satisfy if it has to provide a good representation of the state of 
a changing domain, taking events into account. The important role of 
events in conceptual modeling had already been recognized by the early 
1980s. The concept of an event was one of the concepts defined in an in-
fluential ISO report (Griethuysen 1982). Some of the early methods in 
which events played an important part were 

• DREAM (Riddle et al. 1978); 
• Structured analysis (McMenamim and Palmer 1984); 
• JSD (Jackson 1983); 
• CIAM (Gustaffsson et al. 1982); and  
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• REMORA (Rolland and Richard 1982).  

Currently, (almost) all complete conceptual modeling languages take 
events and their effects into account. Most object-oriented conceptual 
modeling languages and methods model the behavior of information sys-
tems with state transition diagrams, a topic that we shall study in Chaps. 13 
and 14. A different approach (not described in this book) is the use of 
high-level Petri nets (Sølvberg and Kung 1985, Kung and Sølvberg 1986, 
Oberweis and Sander 1996). Olivé (2000b) characterized the main ap-
proaches that have been studied in conceptual modeling and reviewed 
some of the research works that contributed to them. 

Most current languages and methods represent events as invocations of 
actions or operations, or as the reception of signals or messages. Among 
them there are Syntropy (Cook and Daniels 1994), Object-oriented 
SSADM (Robinson and Berrisford 1994), ROOM (Selic et al. 1994), 
IDEA (Ceri and Fraternali 1997), Catalysis (D’Souza and Wills 1999), 
IDEFIX (IEEE 1999), and Larman’s method (Larman 2002). 

The idea of modeling events as entities, and event types as entity types, 
dates back to at least 1980. Three papers appeared during that year describ-
ing the idea: (Borgida and Greenspan 1980, Bubenko 1980 and Mylopou-
los et al. 1980). Among the object-oriented methods that allowed a (rea-
sonably complete) specification of a behavioral schema based on that idea 
there were 

• CIAM (Gustaffsson et al. 1982); 
• OSA (Embley et al. 1992); 
• TaxisDL (Jarke et al. 1992); 
• KAOS (Dardenne et al. 1993); 
• IFO2 (Teisseire et al. 1994); 
• Martin and Odell’s method (Martin and Odell 1995). 

Structural events, domain events and action request events correspond to 
the elementary actions, permissible actions and commands, respectively, 
defined by Griethuysen (1982). Engels et al. (1992) described (with differ-
ent names) structural and domain events. 

Many publications have been dedicated to developing logical theories in 
which an information base can evolve with time. In this chapter, we have 
only sketched the issues of updating logical information bases. The presen-
tation was based on the simple framework presented by, among others, 
Kung (1984), Veloso and Furtado (1985), Lipeck (1986) and Johannesson 
(1995). See (Bonner and Kifer 1998) for a survey of representative logical 
methods and formalisms. The book by Chomicki and Saake (1998) con-
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tains several chapters dealing with the updating of logical information 
bases. 

The frame problem was first mentioned by McCarthy and Hayes (1969). 
Since then, the frame problem has attracted a lot of attention in the artifi-
cial-intelligence community. Borgida et al. (1995) discussed the problem 
in the context of the software engineering field, and showed that there was 
not an adequate solution in the postcondition approach to behavior specifi-
cation. 

In this chapter we have described a particular semantics concerning the 
preconditions and postconditions of events and static constraints. Bicar-
regui and Ritchie (1995) and Queralt and Teniente (2006) described an-
other kind of semantics and compared it with the one described here. 

A topic that requires more research is the automatic synthesis of proce-
dures (methods) from their postconditions and the constraints, in the line 
of (Qian 1993, Pastor and Olivé 1995). 

Veloso and Furtado (1985) presented the basic concepts of consistency 
between a structural schema and domain event types. Kung (1984) ana-
lyzed the satisfiability and correctness of domain event types with respect 
to the structural schema. Snoeck and Dedene (1998) presented a less for-
mal method for consistency analysis. 

Parts of this chapter are based on (Olivé and Raventós 2006). 
There are many good textbooks on MRP systems. The examples in this 

chapter were inspired by (Lunn and Neff 1992). 

11.8 Exercises 

11.1 Assuming the structural schema shown in Fig. 11.1 define the struc-
tural events corresponding to a domain event that cancels a given sched-
uled receipt. Such a cancellation removes the scheduled receipt from the 
domain. 
 
11.2 Design and specify in UML a domain event type whose instances 
cancel scheduled receipts (see the previous exercise). 
 
11.3 Design in UML/OCL the structural schema and the domain event 
types (with their characteristics, constraints and effects) of a system that 
keeps tracks of the state of a Tower of Hanoi game. This game consists of 
three or more pegs and four or more disks of different sizes that can slide 
onto any peg. The goal is to move all disks from an initial peg to another 
one, obeying the rules: (1) Only one disk may be moved at a time; (2) 
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Each move takes the upper disk from one of the pegs and slides it onto an-
other peg; (3) A disk can be moved either to an empty peg or on top of a 
larger disk. Assume that there are only two domain event types: Initializa-
tion and Move. The characteristics of the Initialization event are the num-
ber of pegs and the number of disks. 
 
11.4 Design the structural schema of a system that represents the name, 
sex, marital status (single, married, divorced, or widowed) and marriage 
relationships of the persons existing in some community. Assume that the 
relevant domain events are birth, marriage, divorce, and death. Define 
these events, with their constraints and effects (in the postcondition ap-
proach). Check that the events are consistent with the structural schema. 
 
11.5 Consider a software system that supports on-line playing of one-
person card games such as solitaire/patience. Select a simple variant of the 
game that you may learn easily. Then do the following (in UML): 

1. Create the structural schema. 
2. Determine the main domain events. 
3. Define the event constraints. 
4. Define the event effects using the postcondition approach. 

Use the terminology defined in Wikipedia (solitaire terminology), and as-
sume that the cards in the stock are turned over one by one. 



12 Action Request Events 

In the preceding chapter we studied the concept of a domain event and 
how to specify domain event types. We now study the events that request 
the information system to perform an action. The nature of these events is 
quite distinct from that of domain events, but they are modeled in a similar 
way. 

In the first section, we analyze the concept of an action request event. 
We shall see that there are several kinds of them. In Sect. 12.2, we explain 
how to define action request event types, their characteristics, and their 
constraints in UML. Sections 12.3 and 12.4 explain how to define the ef-
fect of action request events. We deal first with a particular case (query 
events) and then with the general case. Section 12.5 explains that events 
may be specialized. Section 12.6 deals with generating conditions, a topic 
that is to be followed up in the next chapter. 

In this chapter, we give the details of the representation of the behav-
ioral schema only in UML. The representation in logic would be similar to 
that described in the previous chapter. 

The main examples in this chapter are a continuation of those of the 
previous chapter, which were about a material requirements planning 
(MRP) system. The new details will be introduced where they arise. For 
ease of reference, Fig. 12.1 reproduces a part of the structural schema of 
the example. 

12.1 Actions and Action Request Events 

An information system performs actions. The net effect of an action may 
be a change to the information base and/or the communication of some in-
formation or command to one or more recipients. An action request event 
(or, for short, request) is a request to the information system to perform an 
action. 

In conceptual modeling, we assume that the system performs the re-
quested actions instantly.  This assumption is called the perfect-technology 
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assumption, by which one assumes that the system has processors able to 
do anything and everything instantly. 

Depending on how they are initiated, requests may be explicit, temporal 
or generated. An explicit request is initiated explicitly by users or by other 
actions. Such requests are called external or induced, respectively. An ex-
ternal request is initiated by a user. Most requests are external. An induced 
request is initiated by another action, as part of its effect.  

An example of an external request is “order reschedule”. Users issue 
this request when they want to change (delay) the due date of a scheduled 
receipt. When the system receives this request, it has to make the desired 
change and send an email that notifies the change to the corresponding 
vendor.  

An example of an induced request is “send an email message to a ven-
dor”, whose (obvious) effect is to send an email to a vendor. This request 
may be initiated by, among others, the external request “order reschedule”. 

A temporal request is initiated by the passing of time. The request oc-
curs independently of the system. In our MRP system, the schema includes 
the entity type OverdueOrder, as shown in Fig. 12.2. An overdue order is a 
scheduled receipt not received before or on its due date. Assume that we 
have a scheduled receipt SR due on September, 1st 2004. On the arrival of 
the day September 2nd 2004, if SR has not been received yet, then SR be-
comes an overdue order; in this case the system must perform the action of 
classifying SR as an instance of OverdueOrder and sending a reminder to 
the corresponding vendor. 

An example of temporal request of a different sort occurs in the (hope-
fully frequent) situation in which an employee receives a letter from his 
employer stating that, effective from some future day, that employee will 

Fig. 12.1. Fragment of the schema for an MRP application
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have a salary increase. For example, assume that on July 1st 2004 em-
ployee Maria receives a letter stating that she will have a salary increase of 
€ 1000 effective from October 1st 2006. On the arrival of this day, the sys-
tem must change Maria’s salary. 

A generated request is initiated when some generating condition C is 
satisfied. The system detects when C is satisfied and generates the corre-
sponding request. In principle, the generating condition might take any 
form, but the most widely used particular forms are the following: 

• State-based. A change in the truth value of a boolean condition over the 
information base in two consecutive states.  

• Event-based. The occurrence of a domain event when the information 
base satisfies a given condition. 

An example of a state-based generating condition is the automatic issue 
of scheduled receipts. The condition is 

 “The quantity on hand plus the total expected receipts of a product 
 is equal to or greater than the sum of the required quantities of that 
 product.” 

When the truth value of the condition changes between two consecutive 
states (from true to false), the system must issue a scheduled receipt for the 
corresponding product. 

An example of an event-based generating condition is the automatic is-
sue of a scheduled receipt when a “new product” event occurs. In this case, 
the condition is 

 Event = NewProduct 
 Condition = True 

ScheduledReceipt

dueDate: Date

OverdueOrder

Fig. 12.2. Overdue orders are scheduled receipts not received before or on their 
due date

ScheduledReceipt

dueDate: Date

OverdueOrder

Fig. 12.2. Overdue orders are scheduled receipts not received before or on their 
due date
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When a NewProduct domain event occurs and the information base satis-
fies the True condition (i.e. always) the system must generate a scheduled 
receipt for the corresponding product. 

Another example of an event-based generated request occurs in the sub-
scription services provided by some news sources. Customers may sub-
scribe to news about particular topics. The news is entered into the system 
(domain events), and for those items whose topics match the ones selected 
by a subscriber, the system sends him an email message. In this case the 
generating condition, is  

 E = News 
C = One of its topics in the event instance matches one of the top-
ics selected by a subscriber 

Two important kinds of external request are domain event notifications 
and queries. A domain event notification is an external request whose only 
effect is a change to the information base that corresponds to exactly a sin-
gle domain event. By means of domain event notifications, users tell the 
system that a domain event has occurred. The system must change the in-
formation base to reflect the change in the domain. For example, when a 
NewProduct domain event occurs, a user issues a domain event notifica-
tion NewProductNotification, by which the system knows that the event 
has happened in the domain. 

In conceptual modeling, we assume that if the domain changes at time t, 
then such an event will be communicated to the system at t. This assump-
tion is called instantaneous communication. Therefore, we assume that the 
system knows about the events at the earliest possible time, without any 
delay between their occurrence and their communication to the system.  

The basic idea of domain event notifications is that a domain event has 
occurred in the domain, that the event has not been produced directly by 
the system, and that the system must know that it has occurred. If, for 
some practical reason, the instantaneous-communication assumption did 
not hold, and there were a time lapse between the occurrence of the event 
and its communication to the system, the information base would not rep-
resent accurately the domain state during that time.  

The ways in which domain events become known by the system may be 
diverse. It is not mandatory that they are communicated by users. For ex-
ample, consider a system that controls the movement of the elevators in a 
building. The system may be connected to devices (hardware and/or soft-
ware) that sense the arrival of cages at floors and send a signal to the sys-
tem. In this case, domain events are communicated by automatic means, 
instead of manual ones.  
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A query is an external request that provides some information to the ini-
tiator of the request. Queries do not change the information base. The per-
fect-technology assumption also applies to queries, and therefore query 
events are assumed to be processed instantly. A query event occurs at 
some time point and it is assumed that the system answers it instantly.   

12.1.1 Scope of this Chapter 

This chapter deals only with requests that are explicit or are generated by 
an event-based generating condition. The reason for leaving out requests 
that are generated by a state-based generating condition, and temporal re-
quests, is that their definition in most object-oriented languages (including 
UML) is best done with state transition diagrams, which are studied in the 
next two chapters.  

12.2 Action Request Event Types 

Requests can be modeled as entities, exactly as we did for domain events. 
Requests are instances of action event request types (or, for short, request 
types). A request type is a concept whose instances, at a given time, are 
identifiable requests that occur at that time. It is assumed that action re-
quests are instantaneous, that the response of the system to them is also in-
stantaneous (that is, the perfect-technology assumption), and that after the 
response (and before the next time tick), action requests are removed from 
the information base.  

Request types have a name, which must be unique in a schema. The im-
portance of choosing good names cannot be overstated. Naturally, the 
name should be agreed on and be well understood by the people involved. 
A useful rule is that the name should be a singular noun, possibly with ad-
jectives. When this rule is followed, if Ev is the name of a request type, 
then the following sentence has meaning: 

An instance of this request type is an Ev event 

The application of the rule to OrderReschedule gives 

 An instance of this request type is an OrderReschedule event 

which has a clear meaning. 
In medium-to-large taxonomies, it is convenient to generalize all request 

and query types into common types. To this end, we define the event types 
ActionRequest and Query. These types are the direct or indirect supertypes 
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of all request and query types, respectively. These types are defined as ab-
stract (derived by union of their subtypes). Figure 12.3 shows the integra-
tion of these types with the top-level taxonomy introduced in the preceding 
chapter (see Fig. 11.3). The taxonomy shown in Fig. 12.3 could be prede-
fined, and be part of all conceptual schemas. 

On the other hand, we can include additional event types that define 
common parts of two or more request types. In the example of Fig. 12.4, 
we have generalized OrderReschedule and OrderDetails into Exist-
ingScheduledReceiptEvent, an ad hoc request type, and we have defined in 
it the common orderNo attribute. We shall see other advantages of these 
types in the following sections. 

Domain event notification types need not be explicitly defined by the 
conceptual modeler. For practical purposes, we may assume that for each 
domain event type there is a domain event notification type whose effect is 
the generation of the corresponding domain event, as we shall explain in 
Sect. 12.4. The convention that we will follow here is that the name of 
such an event type is the same as that of its domain event type with the 
suffix “Notification”. For example, the domain event notification type cor-
responding to the domain event type OrderReception will be OrderRecep-
tionNotification. For simplicity, we shall omit the suffix when it is clear 
from the context. 

Fig. 12.3. Top level taxonomy of event types
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12.2.1 Characteristics of Action Request Events 

The characteristics of a request are the set of relationships in which it par-
ticipates. There is at least one relationship between each request and a time 
point, representing the occurrence time of the request. We assume that the 
characteristics of a request are determined when the event occurs, and re-
main fixed.  

The characteristics of a request may be derived. The value for a derived 
characteristic is computed from other characteristics and/or the state of the 
information base when the request occurs, as specified by the correspond-
ing derivation rule.  

In the example of Fig. 12.4, the attribute orderNo identifies a scheduled 
receipt. The association between existingScheduledReceiptEvent and order 
may be derived from orderNo. The derivation rule is 
context ExistingScheduledReceiptEvent:: 
          order:ScheduledReceipt 
  derive: ScheduledReceipt.allInstances()->  
            any(orderNo = self.orderNo) 

Fig. 12.4. Definition of OrderReschedule and OrderDetails event types as 
subtypes of general event types
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The characteristics of a domain event notification type are exactly the 
same as those of its corresponding domain event type. 

12.2.2 Constraints of Action Request Events 

A request constraint is a condition that a request must satisfy to occur. A 
request constraint involves the characteristics of the request and the state 
of the information base before the occurrence of the request. For example, 
a constraint of OrderReschedule is that the rescheduled order exists. The 
system must check that each request satisfies its constraints.  

It is assumed that the state of the information base before the occurrence 
of the request satisfies all defined constraints. Therefore, a request E can 
occur (or is allowed to occur) when the domain is in a state S if 

• the state S satisfies all constraints, and  
• the request E satisfies its event constraints.  

An information system checks the constraints of a request when it is re-
ceived and before it has any effect in the information base or produces any 
answer. Requests that do not satisfy their constraints are not allowed to oc-
cur and, therefore, they must be rejected. According to the perfect-
technology assumption, constraint checking is done instantaneously. 

Request constraints are always creation-time constraints, because they 
must be evaluated when the request occurs. In UML, these constraints are 
best expressed by constraint operations. In this chapter we shall define 
constraints by operations and we will specify them in OCL.  

Figure 12.4 shows the event constraint validDate() of OrderReschedule, 
which states that the new due date must be greater than the current due 
date of the rescheduled order. The formal specification is 
context OrderReschedule::validDate():Boolean 

body: newDueDate > order.dueDate 

On the other hand, the order must exist. This is also an event constraint. 
However, in this case the constraint can be expressed as a cardinality con-
straint. The multiplicity 1 of the order role requires that each instance of 
ExistingScheduledReceiptEvent must be linked to exactly one scheduled 
receipt. The constraint is violated if the derivation rule of order does not 
give an instance of ScheduledReceipt. 

An event constraint defined in a supertype applies to all its direct and 
indirect instances. This is one of the advantages of defining event taxono-
mies: common constraints can be defined in a single event type. Figure 
12.4 shows an example. The constraint that the order must exist is defined 
in the event type ExistingScheduledReceiptEvent. This constraint applies to 
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the instances of both OrderReschedule and OrderDetails. Note that the 
constraint has been defined by a cardinality constraint, as explained above. 

12.3 Effects of Queries 

Queries are a particular kind of request. For presentation purposes, it is ap-
propriate to study first how to specify the effects of queries, before dealing 
with the specification in the general case. We shall describe the specifica-
tion only in the postcondition approach, in UML. 

A query is an external request whose effect is to provide some informa-
tion to the initiator of the request. In conceptual modeling, we define the 
informational content of answers, but we abstract from the details concern-
ing the format and characteristics of output devices (screen, printer, or 
voice). The effect is specified by an expression whose evaluation in the in-
formation base gives the requested information. The query expression is 
written in some language, which depends on the conceptual modeling lan-
guage used.  

In UML, we can represent the answer to a query event, and the query 
expression, in several ways. We shall describe one of them here, which can 
be used as is, or as a basis for the development of alternative ways.  

The answer to a query is modeled as one or more attributes and/or asso-
ciations that have some predefined name. In the examples given here, we 
shall use names starting with answer. An alternative could be the use of a 
stereotype to indicate that an attribute or association is the answer.  

Fig. 12.5. Definition of query event type OrderDetails. The answer is given by 
the attribute answer
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We need a way to define the values of the attributes and associations of 
the answer. To this end, we use the operation effect() that we have hosted 
in Event (see Fig. 12.3). This operation will have a different specification 
in each event type. For queries, its purpose is to specify the values of the 
attributes and associations of the answer. The specification of the operation 
can be done by means of postconditions, using OCL.  

Figure 12.5 shows the representation of query type OrderDetails. An in-
stance of this query requests the details of a given scheduled receipt (prod-
uct number, quantity ordered, and vendor’s name). The answer is given by 
the following attribute: 

answer: TupleType(pNo:String, 
                  quantity:natural,  
                  vendorName:String) 

The specification of the effect operation might be 
context OrderDetails::effect() 

post:  
  answer =  
    Tuple{pNo = order.product.productNo, 
          quantity = order.quantity,  
          vendorName = order.product.vendor.name} 

In the context of an MRP system, a much more challenging example of 
a query event is that of a worksheet. We need to describe the contents of a 
worksheet a little before we study how to define it formally. A worksheet 
shows, in condensed form, a plan for a specific product. Figure 12.6 shows 
the worksheet for a product ABC in a plan produced on 2003-09-04. We 
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assume that the planning horizon is seven days, which correspond to the 
seven columns in the Worksheet.  

The first row shows the requirements for the product on the correspond-
ing day, obtained from the instances of the entity type Requirement (see 
Fig. 12.1). These are the quantities required by the customers on each day. 

The second row shows the scheduled receipts for the product due on the 
corresponding day, obtained from the instances of the entity type Sched-
uledReceipt (see Fig. 12.1). In the worksheet, we see that 25 units of prod-
uct ABC are due to be received on day 2. 

The third row shows the quantities that we need to receive on each day 
to satisfy the requirements. The planned order receipts have not yet been 
released to the vendor. In the worksheet we see that we need to receive 25 
units on day 4, and 30 units on day 7. The minimum quantity we may re-
ceive is given by the attribute orderMinimum of Product, shown in Fig. 
12.1. In this case, we assume that the minimum is 25 units. 

The fourth row shows the quantities on hand that we shall have at the 
end of each day, assuming that the planned order receipts arrive as 
planned. Those quantities are defined as the “projected on hand” for the 
previous day, plus the scheduled receipts, minus the requirements and plus 
the planned order receipts. 

The last row shows the dates on which the planned orders should be re-
leased to the vendors and the quantities to be ordered. It takes into account 
the purchasing lead time, which is the same for all products from the same 
vendor, and defined in the attribute leadTime of Vendor (see Fig. 12.1). In 
this case, we assume that the lead time is 3 days. Given this lead time, if 
we need 25 units on day 4, we should release an order for them on day 1. 

Fig. 12.7. Fragment of the schema of an MRP system showing the entity types, 
attributes and associations related to plans
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Figure 12.7 shows a fragment of the schema corresponding to the MRP 
plans. In principle, there is an instance of Plan for each working day; that 
is, plans are regenerated every day. For each product existing on the day of 
the plan, there is a link of the association plan–product, reified into Pro-
ductPlan. The derived attribute quantityOnHand gives the quantity on 
hand of the corresponding product when the plan is created. The values of 
this attribute appear in the column labeled “Now” in the worksheet (Fig. 
12.6). 

For each instance of ProductPlan there are ph instances of Product-
DayPlan, where ph is the planning horizon (we assume ph = 7 days in our 
example). Each instance of ProductDayPlan corresponds to a particular 
day. The attributes of ProductDayPlan correspond to the values shown in 
the worksheet. 

We now have all we need to specify formally the contents of a work-
sheet. We shall consider Worksheet to be a query event type, as shown in 
Fig. 12.8. An instance of Worksheet is a query of the worksheet data corre-
sponding to a given plan and product. The derived association with Pro-
ductPlan gives the requested product plan. Moreover, the association al-
lows us to state that an instance of Worksheet must refer to an existing 
product plan.  

The attribute answer gives the data needed to show the worksheet. The 
type of this attribute is 

Fig. 12.8. Definition of the query event type Worksheet. The characteristics are the 
date of the plan and the productNo of the product. The answer is the attribute answer
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answer:  
  TupleType( 
    qohNow: Natural, 
    periods:Set( 
      TupleType( 
        date:Date,  
        requirements:Natural, 
        scheduledReceipts:Natural, 
        plannedOrderReceipt:Natural, 
        onHand:Integer, 
        plannedOrderRelease:Natural))) 

The specification of the effect operation might be 
context Worksheet::effect() 

post:  
  answer =  
    Tuple(qohNow = productPlan.quantityOnHand,  
          periods = productPlan.productDayPlan -> 
            collect (pdp| 
              Tuple(date = pdp.date, 
                requirements = pdp.requirements, 
                scheduledReceipts = pdp.scheduledReceipts, 
                plannedOrderReceipt = 
                  pdp.plannedOrderReceipt, 
                onHand = pdp.projectedOnHand, 
                plannedOrderRelease =  
                  pdp.plannedOrderRelease))->asSet()) 

12.4 Effects of Action Request Events 

An action request event is a request to an information system to perform an 
action. The effect of the request is the result of the execution of the action. 
In the postcondition approach, the effect of a request is defined by a condi-
tion that, in the general case, may involve four kinds of assertion: 

• Domain events. One or more domain events have occurred. The action 
must induce these events, which, in turn, will change the information 
base as specified in their respective effect. The characteristics of the in-
duced domain events are determined by the request. The induced events 
must satisfy their constraints; otherwise, the request will be rejected. 

• Assertions about the information base. The action leaves the informa-
tion base in a state that satisfies a given condition. Instead of stating that 
one or more domain events have occurred, this kind of assertion speci-
fies a condition that the information base must satisfy after the execu-
tion of the action. The implementation will achieve this effect by means 
of domain events. 

• Communications. The action has communicated some information or 
command to one or more recipients.   
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• Requests. One or more requests have occurred. The action must induce 
these requests, which, in turn, will execute their respective actions. 

In UML, we can represent the effect of a request by means of the effect 
operation, similarly to what we did for domain events. We can assert that a 
domain or action request event has occurred by asserting that an instance 
of the corresponding event type has been created. An assertion that the in-
formation base is in some state can be defined as we did for domain 
events. 

 As an example, consider the request type OrderReschedule, shown in 
Fig. 12.9. An instance of this type requests the system to delay an order. 
The system must change the due date of the order, and tell the correspond-
ing vendor that the due date has been delayed. The effect of the request 
may be specified with two postconditions as follows: 

Fig. 12.9. Definition of the effects of OrderReschedule events 
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context OrderReschedule::effect() 
post Create domain event DueDateChange: 
  ddc.oclIsNew() and  
  ddc.oclIsTypeOf(DueDateChange) and 
  ddc.scheduledReceipt = order and  
  ddc.newDueDate = newDueDate 
post Inform the vendor: 
  dcn.oclIsNew() and  
  dcn.oclIsTypeOf(DateChangeNotice) and 
  dcn.scheduledReceipt = order 

The first postcondition requires the creation of an instance of the do-
main event type DueDateChange, whose definition is shown in Fig. 12.9 
(right). The effect of a DueDateChange domain event is 
context DueDateChange::effect() 
  post: scheduledReceipt.dueDate = newDueDate 

Note that in Fig. 12.9 we have shown a usage dependency between Or-
derReschedule and DueDateChange, with the standard stereotype «cre-
ate», to indicate graphically that the effect of an OrderReschedule includes 
the generation of instances of DueDateChange. There is a similar depend-
ency with DateChangeNotice. The use of these dependencies is optional, 
but they help one understand the effects of events. 

We can encapsulate in an operation all the details needed to communi-
cate a piece of information or a command to a recipient. We define an en-
tity type (if it does not exist already) whose instances are the recipients, 
with an operation that performs the actions needed for the recipient to re-
ceive the information or command. In UML, the operation must be defined 
as a query (isQuery = true). Then, the assertion that some piece of infor-
mation or command has been communicated to one or more recipients is 
the assertion that the corresponding operations have been invoked. 

As an example, consider the request DateChangeNotice, induced by an 
OrderReschedule. The action must send an appropriate email to the ven-
dor: 
context DateChangeNotice::effect() 
  post: let subject:String = … 
        let body:String =  …  
        in 
          scheduledReceipt.product.vendor ^  
             sendEMail(subject,body) 

In this expression, we assume that the entity type Vendor hosts an opera-
tion with signature sendEMail(subject:String,body:String). Note that in 
OCL the expression  

scheduledReceipt.product.vendor ^ sendEMail(subject,body)  

is true if a sendEMail message has been sent to the vendor with the argu-
ments shown. 
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As another example, consider now the most important request in an 
MRP system: the generation of a plan. This is the event with which users 
request the system to generate a plan. We assume that in our system the 
plan is regenerated on a daily basis (there are never two plans with the 
same date). Every day (for example, at night), users request the system to 
generate the plan for the following day, with a planning horizon of seven 
days.  

Figure 12.10 shows the event type PlanGeneration. Its instances have 
no characteristics (besides the occurrence time, defined at the Event level). 
There is only one event constraint, planDoesNotExist, which prevents a 
plan being generated twice for the same day. The formal definition is 
context PlanGeneration::planDoesNotExist():Boolean 

body: not Plan.allInstances() ->  
            exists(p:Plan|p.date = self.time.date + 1)  

In this example, the event effect will be defined as conditions that the 
information base must satisfy after the execution of the action. We have to 
create an instance of Plan, a link in the association plan–product for each 
existing product at the time the plan is generated, and for each Product-
Plan thus created, an instance of ProductDayPlan for each day of the 
seven days in the planning horizon (see Fig. 12.7). The formal definition of 
the event effect is 

Fig. 12.10. An instance of PlanGeneration requests the generation of a plan for the 
next day
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context PlanGeneration :: effect() 
post: --An instance of Plan is created 
  pl.oclIsNew()and  
  pl.oclIsTypeOf(Plan) and 
  pl.date = self.time.date + 1 and 
  --For each product, there is a link Plan-Product 
  pl.product = Product.allInstances() and 
  --An instance of ProductDayPlan is created  
  --for each of the next seven days 
  pl.productPlan -> forAll     
      (pp: ProductPlan |  
         Sequence {1..7} -> forAll(i:Integer| 
   pdp.oclIsNew() and 
   pdp.oclIsTypeOf(ProductDayPlan) and 
            pdp.productPlan = pp and 
            pdp.date = self.time.date + i)) 

Note that the attribute quantityOnHand of ProductPlan and almost all 
attributes of ProductDayPlan are derived. Their values are defined by 
derivation rules and, therefore, their values must not be set in the above 
postcondition, thus making the specifications simpler. These attributes are 
constant, which means that they have a creation-time derivation rule. We 
illustrate two of these attributes in the following. 

The attribute quantityOnHand of ProductPlan gives the quantity on 
hand of the corresponding product when the plan is created. Its creation-
time rule is very simple: 
context ProductPlan::quantityOnHand:Natural 
  derive: product.quantityOnHand  

The attribute projectedOnHand of ProductDayPlan gives the quantity 
on hand that we shall have at the end of the day, assuming that the planned 
order receipts arrive as planned. Its creation-time rule is 
context ProductDayPlan::projectedOnHand:Natural 
  derive:  
    let projectedAvailablePreviousDay:Natural = 
          if date = productPlan.plan.date then 
            productPlan.quantityOnHand 
          else 
            ProductDayPlan.allInstances() ->  
              any(productPlan = self.productPlan and 
          date = self.date – 1).projectedOnHand 
          endif 
    in 
      projectedAvailablePreviousDay + 
      scheduledReceipts + 
      plannedOrderReceipt + 
      requirements     
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12.4.1 Effects of Domain Event Notifications 

As we know, a domain event notification is an external action request 
whose only effect is a change to the information base that corresponds to 
exactly a single domain event. For each domain event type, there is a do-
main event notification type, whose only effect is generation of the corre-
sponding domain event. 

For example, consider the domain event type OrderReception, shown in 
Fig. 12.11. The event effect is that the scheduled receipt now becomes a 
ReceivedOrder (see Fig. 12.1), and that the quantity on hand of the corre-
sponding product is increased by the quantity received. Therefore, the 
specification of effect() for OrderReception is 
context OrderReception::effect() 
  post: --The order is now received 
    order.oclIsTypeOf(ReceivedOrder) and 
    order.oclAsType(ReceivedOrder).receptionDate =  
      self.time.date        
  post: --The quantity on hand is increased 
    order.product.quantityOnHand =    
      order.product.quantityOnHand@pre + 
      order.quantity 

Corresponding to OrderReception, there would implicitly be a domain 
event notification type, named OrderReceptionNotification, and whose 
predefined effect would be the generation of an instance of OrderRecep-
tion. Formally, the effect could be defined by 
context OrderReceptionNotification::effect() 
  post:  
    oRec.oclIsNew() and  
    oRec.oclIsTypeOf(OrderReception) and  
    oRec.order = order 

Fig. 12.11. Definition of the domain event type OrderReception
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12.5 Event Specialization 

Like any other entity type, domain and action request event types may be 
specialized. We may use these specializations when we want to define an 
event type whose characteristics, constraints, and/or effect are extensions 
and/or specializations of another event type. 

For example, assume that some instances of the domain event notifica-
tion NewRequirementNotification are special because they require a large 
quantity of their product and, in this case, there is a rule that the quantity 
required must be ordered immediately from the corresponding vendor. 
This special behavior can be defined in a new event type, SpecialRequire-
ment, defined as a specialization of NewRequirementNotification, as 
shown in Fig. 12.12.  

Note that SpecialRequirement adds a new constraint called largeQuan-
tity. The quantity required must be at least ten times the quantity of the 
product that can be ordered. The new constraint largeQuantity can be de-
fined as 
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context SpecialRequirement::largeQuantity():Boolean 
  body: quantity > product.orderMinimum * 10 

The effect of a SpecialRequirement is the same as that of a NewRe-
quirementNotification, but we want the system to create an instance of 
PurchaseOrderRelease. We define this extension as an additional postcon-
dition of the effect operation:1 
 
context SpecialRequirement::effect() 
  post:  
    -- Create an instance of event PurchaseOrderRelease 
    pOR.oclIsNew() and 
    pOR.oclIsTypeOf(PurchaseOrderRelease)and 
    pOR.product = self.product and 
    pOR.quantity = self.quantity and 
    pOR.dueDate = self.dateRequired 

12.6 Generating Conditions 

Generated requests are initiated when a generating condition is satisfied. 
As we saw in Sect. 12.1, generating conditions may be state-based or 
event-based. State-based generating conditions cannot be defined with the 
constructs presented in this chapter. In the following chapters we shall 
study state transition diagrams, which allow an easy definition of those 
conditions. 

Event-based generating conditions can be defined with the constructs 
studied in this chapter. Recall that the general form of these conditions is  

“When an instance of the domain event type E occurs and the state 
of the information base prior to the event occurrence satisfies the 
condition C”  

where E can be any domain event type. Given that domain events are in-
duced by requests, we can extend the definition of the inducing requests by 
checking whether or not C is satisfied and, if so, generating the appropriate 
event. 

For example, assume that, in the MRP system, when an order is re-
ceived (i.e. an instance of OrderReception occurs; see Fig. 12.11), we want 
to send an acknowledgment email message to the corresponding vendor. 
The generating condition is 

                                                      
1 Recall that in UML, when an operation is redefined, new postconditions can 

be added. 
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“When an instance of the event type OrderReception occurs and 
the state of the information base prior occurrence of the event sat-
isfies the condition True”  

The checking of the generating condition (not needed in this case) and, if it 
is satisfied, the generation of the event can be part of the effect of Order-
ReceptionNotification. The complete effect is now 

context OrderReceptionNotification::effect() 
  post:  
    oRec.oclIsNew() and  
    oRec.oclIsTypeOf(OrderReception) and  
    oRec.order = order 
  post  Sending an acknowledgement message:  
    let subject:String = … 
    let body:String =  … in 
      order.product.vendor ^ sendEMail(subject,body)    

12.7 Bibliographical Notes 

Many of the bibliographical notes given in Chap. 11 are applicable here, 
and we shall not repeat them.  

Wieringa (2003, Chap. 3) gave a detailed description and classification 
of what we have called domain and action request events.   

12.8 Exercises 

12.1 Consider a Web-based online shopping system that is familiar to you. 
Give a list of five or more requests (seen by the customers) that the system 
deals with. For each of them, give a short description (in natural language) 
of its effect. Classify each request in terms of its kind (general action re-
quest, or query) and source (external, generated, or temporal). 
 
12.2 In the context of an MRP system, define the characteristics, con-
straints, and effect of the domain event type VendorChange and the re-
quest type VendorChangeRequest. An instance of VendorChange corre-
sponds to the change of the vendor of a product. Its characteristics are the 
product whose vendor changes and the new vendor of the product, which 
is an existing vendor. An instance of VendorChangeRequest requests the 
system to change the vendor of a product. Its characteristics are also the 
product whose vendor changes (identified by its productNo) and the new 
vendor of the product (identified by its name). The effect of an instance of 
VendorChangeRequest is to induce the corresponding instance of Vendor-
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Change. Note that VendorChangeRequest is not the domain event notifica-
tion of VendorChange, because its characteristics are the identifiers of the 
product and vendor, instead of the associations with the changed product 
and the new vendor. 
 
12.3 One of the main outputs of an MRP system is a listing of the planned 
order releases. The listing includes all products for which there is a 
planned order release on the first day of the current plan. The listing is 
used by the planner, who has to release purchase orders to the correspond-
ing vendors. Assume that the listing is the answer to a query PlannedOr-
derReleasesListing. This answer gives the set of product numbers that 
must be ordered and the quantity that must be ordered, according to the 
current plan (i.e. the plan with a date equal to the current day). In the ex-
ample of Fig. 12.6, if there were only one product, the answer would be 
the set {<ABC,25>}. Define the effect of this query. 
 
12.4 Another main output of an MRP system is reschedule notices, used to 
suggest adjustments (delays) to the due date of scheduled receipts. For an 
example, see Fig. 12.6, where the product ABC is shown with a scheduled 
receipt due on day 2. However, it can be seen that the scheduled receipt is 
not needed at that time, and that we could delay it to day 3. Assume that 
there exists a query SuggestedReschedules. In order to keep the exercise 
simple, assume that the answer gives only the set of product numbers that 
have scheduled receipts that can be rescheduled, according to the current 
plan (i.e. the plan with a date equal to the current day). In the example of 
Fig. 12.6, if there were only one product, the answer would be the set 
{ABC}. Define the effect of this query. 
 
 12.5 Consider the Olympic medal winner database compiled by the 
International Olympic Committee (http://www.olympic.org/uk/ 
index_uk.asp). The database can be searched by filling in the form given 
on the Web page (http://www.olympic.org/uk/athletes/results/ 
search_r_uk.asp). 

1. Design the structural schema corresponding to the domain repre-
sented in this database. Define all relevant integrity constraints. 

2. Design the search form as a query. Define in OCL the constraints and 
the effect of this query. Check that the query can be instantiated as 
indicated in the three examples shown on the Web page. Check also 
that the answer that would be returned by each example query 
matches the one given on the website. 

 



13 State Transition Diagrams 

In the two preceding chapters, we studied how to define the effect of 
events by means of effect() operations. An alternative, or complementary, 
way is the use of state transition diagrams. This is the main topic of this 
chapter. We start in Sect. 13.1 with a brief review of finite state machines 
and their associated state transition diagrams. We then explain, in Sect. 
13.2, how entities can be modeled as state machines, and that in this case 
state transition diagrams are part of the behavioral schema. Sections 13.3 
to 13.5 describe how state transition diagrams can be defined in UML. 

Statecharts are an extension of state transition diagrams, introducing 
nested states, orthogonality, and broadcasting. Statecharts can be defined 
in UML. We shall study statecharts in the next chapter. 

Our main examples in this chapter (and the next one) will be based on 
the popular EU-Rent case study. EU-Rent is a fictitious car rental company 
with branches in several countries which provides typical car rental ser-
vices. The details of the examples will be introduced where they arise. A 
complete description of the case study can be found in the references given 
in the bibliographical notes at the end of this chapter.  

13.1 Finite State Machines 

A finite state machine (or, for short, state machine) is a machine that at any 
time is in one and only one of a finite number of states. In any state, the 
machine may receive inputs. When the machine receives an input it per-
forms a transition from its current state (called the source state) to a target 
state. The target state depends on the source state and the input received. 
The source state and the target state in a transition may be the same, and 
then the transition is called a self-transition. Transitions are assumed to be 
instantaneous.  

State machines are abstract models of real-world systems. The concrete 
meaning of “state” and “input” depends on the system being modeled.  

There are several types of state machine. In the following we review 
only three of them: finite automata, Moore machines, and Mealy machines. 
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13.1.1 Finite Automata  

The simplest state machines are the finite automata. A finite automaton 
consists of a finite set of states and a set of transitions from state to state 
that occur on input of symbols chosen from a given alphabet. For each in-
put symbol, there is exactly one transition out of each state (possibly back 
to that state itself). One state is the initial state, in which the automaton 
starts. Some states may be designated as final states. 

A directed graph, called a state transition diagram (or, for short, transi-
tion diagram), is associated with a finite automaton as follows. The verti-
ces of the graph correspond to the states of the finite automaton. If there is 
a transition from state q to state p on input a, then there is an arc labeled a 
from state q to state p in the transition diagram. 

Figure 13.1 shows a transition diagram of a finite automaton. The initial 
state is q0, indicated by the arrow labeled Start. For each state there are two 
outgoing transitions, labeled 0 and 1. The final state is q1, shown by the 
double circle. Once a final state is reached, the finite automaton remains in 
it forever.  

13.1.2 Moore and Mealy Machines 

The finite automata described above do not produce any output. They 
change their state in response to the input symbol received, but do nothing 
else. The Moore and Mealy machines are extensions to finite automata that 
produce an output.  

A Moore machine extends a finite automaton by associating an output 
with each state. Each state has exactly one output. In a state transition dia-
gram, the outputs are shown as labels of the corresponding state. Every 
time the machine reaches a state, it produces the output associated with 
that state. 

Fig. 13.1. The state transition diagram of a finite automaton
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A Mealy machine is like a Moore machine except that the output is as-
sociated not with a state, but with a transition. Thus, the output produced 
depends on the source state and input symbol received. 

It can be shown that for each Moore machine there exists a Mealy ma-
chine that produces the same outputs for all inputs. Conversely, it can be 
shown that for each Mealy machine there exists a Moore machine that 
produces the same outputs for all inputs. The Moore and Mealy machines 
are said to be equivalent. 

13.2 Entities as State Machines 

In general, entities can be modeled as state machines. Each entity modeled 
in this way is a different machine, but the associated transition diagram is 
the same for all instances of the same entity type. Transition diagrams are 
part of the behavioral schema.  

For example, in the EU-Rent case study, cars can be modeled as ma-
chines. Each car will have its own machine, but the transition diagram will 
be common to all instances of the entity type Car. Likewise, car rentals 
can be modeled as machines too. Each car rental will have its own ma-
chine, but the transition diagram will be common to all instances of the en-
tity type Rental. 

In principle, not all entities need to be modeled as machines. Transition 
diagrams are an effective mechanism for defining the behavior of the in-
stances of some entity types. However, they are not intended to be the best 
mechanism in all cases. This is one reason why some conceptual modeling 
languages offer several ways to model behavior. In the present example, 
transition diagrams are well suited to modeling the behavior of cars and 
rentals, but it is doubtful that they are the best way for modeling the behav-
ior of all entity types. 

The states of the machine corresponding to an entity e are the situations 
in which e may be during its existence. The set of states is described in the 
corresponding transition diagram. At any time, each entity is in one and 
only one state.  

In our example, we could define the following set of states of a car: 

• Available. A car is available when it is physically located in the parking 
area of the branch that owns it. 

• InUse. A car is in this state when it has been picked up by a customer 
and has not been returned yet. 
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• InTransfer. The company may request a transfer of a car from one 
branch, where it is not being used, to another branch that needs it. A car 
is in transfer while it is being transferred between two branches. 

• InChecking&Preparation. A car is in this state when it is being checked 
for damage or is being serviced for maintenance or repair.  

For some entity types, one can define situations according to two or 
more different perspectives, which give rise to two or more sets of states. 
A typical example is Person. One perspective may be the marital status, 
and then the set of states of a person is single, married, divorced and wid-
owed. However, when the perspective is the period of life, then the set of 
states may be child, young and adult. We shall study how to define two or 
more sets of states for a given entity type later on in this chapter. 

In some perspectives, an entity could be in an unlimited number of 
states. For example, assume that cars have an attribute mileage, which 
gives the distance traveled by a car. If each possible value of this attribute 
is a different state of the car, then the number of states may be very large 
or even infinite. In practice, we model only those states that help in defin-
ing event constraints or effects. In the EU-Rent case, cars with a mileage 
greater than 40,000 km must be sold. From the point of view of saleability, 
we may then distinguish two states of cars: Not for sale (mileage ≤ 40,000 
km) and To be sold (mileage > 40,000 km). 

The set of states of a car rental could be: 

• Pending. A rental is pending from the time it has been created until it 
has a car allocated to it or it is canceled. 

• Allocated. The rental has a car allocated to it. 
• Opened. A rental is opened when the allocated car has been picked up 

and it has yet not been returned. 
• Closed. A rental is closed when the rented car has been returned by the 

customer. 
• Canceled. A rental is canceled if it has been explicitly canceled by the 

customer or the car has not been picked up by the due time. 

In the most usual (and interesting) case, a machine has two or more 
states. However, a machine could have only one state. This is indeed a de-
generate case, but acceptable. 

States have a name, which must be unique to the state machine. A prac-
tical rule is that the name N of a state of an entity type E should be such 
that one of the following sentences is meaningful: 

 The E is N 
 The E is in the state of N 
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According to this rule, Available would be a good state name of Car, be-
cause the sentence 

 The car is Available 

has a clear meaning. 
Conceptually, the state of an entity could be modeled by means of an at-

tribute. The attribute would be total and single-valued. The instances of the 
attribute type would be the set of possible states. For example, the states of 
a car could be represented by an attribute availability. The possible values 
of this attribute are the states defined above (Available, InUse, etc.). Each 
car would have a single value for this attribute. 

The main inputs of a state machine associated with an entity e are the 
domain events that change the state of the entity and/or the relationships 
(attributes or associations in UML) in which e participates. In general, 
however, the inputs of a state machine may be any domain or request 
event. 

In the case study, the inputs to the state machine of a car are the follow-
ing domain events: 

• Purchase. The company receives a new car. 
• Pick-Up. The car is picked up by the customer who reserved it. 
• Return. The customer returns the car to the company. 
• Transfer. The car starts to be transferred to another branch. 
• Reception. A transferred car is received by its destination branch. 
• TakenForService. The car is sent to a garage or service depot where it 

will be serviced. 
• CarReady. The car becomes available after being checked and prepared 

for use. 
• Sale. The car is sold. 

In the state machine of a rental, the inputs are domain and temporal re-
quest events. The domain events are: 

• Reservation. A customer reserves a car of a specific model for a 
particular date interval. 

• Allocation. A car is allocated to the rental. 
• Pick-Up. The car is picked up by the customer who reserved it. 
• Extension. The customer extends the time period of the rental. 
• Return. The customer returns the car to the company. 
• Cancellation. The customer cancels the rental. 

The temporal request events are: 
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• End of the scheduled pickup day. As its name implies, this event 
happens at the end of the scheduled pickup day of the rental. 

• Ninety minutes after the scheduled pickup time. Similarly, this event 
happens 90 minutes after the scheduled pickup time of the rental. 

When, as is often the case, the same event changes the relationships of 
several entities, the event may be input to the finite state machines of all of 
them. In the above examples, the domain event Pick-Up is input to the 
state machines of a car and of its current rental. 

A transition involves a source state s, an event d, and a target state t. The 
event d is called the trigger of the transition. When the state machine is in 
state s and it receives an event d for which there is a transition to state t, it 
performs that transition to t. We say that d fires the transition. If the ma-
chine receives an event which is not the trigger of any transition, then the 
machine is unaffected by the event.  

In the case study, an example of a transition of a car is: 

• Source state: Available. 
• Trigger: domain event Pick-Up. 
• Target state: InUse. 

The meaning is that when a car is in the state Available and the domain 
event Pick-Up of that car occurs, the new state of the car is InUse. 

However, most conceptual modeling languages extend the concept of 
transition by including guards. A guard is a condition over the information 
base and/or the parameters of the trigger. Guards are defined by boolean 
expressions. In this case, a transition involves a source state s, a guard g, 
an event d, and a target state t. There may be two or more transitions with 
the same source state and event, but with different guards. When the state 
machine is in state s and it receives an event d for which there is a transi-
tion to state t and the guard g is true, that transition is enabled. If there is 
only one enabled transition, then it is fired. If there are several enabled 
transitions only one of them is fired. In principle, the choice of which tran-
sition is fired is nondeterministic. If an event does not enable any transi-
tion, then the machine is unaffected by the event. 

In the case study, an example of a transition of a car with a guard is: 

• Source state: Available. 
• Guard: the car is not assigned to a rental. 
• Trigger: domain event Transfer. 
• Target state: InTransfer. 
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The meaning is that when a car is in the state Available and the domain 
event Transfer occurs, if the car is not assigned then the new state of the 
car is InTransfer. 

When a transition fires, the state of the machine changes to the target 
state. Additionally, the machine may perform some action. In general, one 
can distinguish four kinds of action: 

• Transition. The action is performed when the transition is fired. 
• State entry. The action is performed when the machine enters a state. 
• State exit. The action is performed when the machine exits a state. 
• In state. The action is performed while the machine is in a state. 

A conceptual modeling language may allow all of the above kinds of ac-
tions to be defined, or only a subset of them. When two or more kinds are 
possible, the semantics of the language specifies the order in which these 
actions are performed. 

13.2.1 Entity Life Cycle 

The life cycle of an entity e at a time point t is the sequence of states in 
which e has been since its creation until t. For example, the life cycle of a 
car rental cr at t could be 

 Pending, Allocated, Opened. 

A life cycle is complete if its last state is a final state. The above life cy-
cle is not complete, because Opened is not a final state. 

Transition diagrams define two kinds of constraint on entity life cycles: 

• The set of allowed states. This is a static constraint. 
• The set of legal sequences of these states. This is a transition constraint 

because it involves two or more states of the information base. 

For example, the transition diagram of Rental defines that the above life 
cycle is valid, but 

 Pending, Opened, Allocated 

is not valid because there does not exist a transition from Pending to 
Opened. 
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13.3 State Transition Diagrams in UML 

UML includes many features for specifying state machines, but only a 
subset of them is needed for the behavioral conceptual modeling of most 
systems. In particular, UML defines two kinds of state machine: behav-
ioral and protocol state machines. Both could be used for conceptual mod-
eling. However, in this chapter we shall use only protocol state machines, 
because they are simpler than the behavioral ones, and because they can be 
integrated more easily with the behavioral schemas that we have studied in 
previous chapters. 

A protocol state machine is associated with an entity type, and it is de-
scribed by a transition diagram. The actions performed by a protocol state 
machine are associated with transitions. Therefore, in this respect it is a 
Mealy machine. These machines have no actions to be performed when 
they enter or exit a state, or while they are in a state. 

An entity type may have several protocol state machines. Each protocol 
state machine has a unique name. By default, the name of the protocol 
state machine is that of its associated entity type. 

A transition diagram consists of states and transitions. Figures 13.2 and 
13.3 show the transition diagrams of Car and Rental, respectively, in our 
case study. Graphically, states are shown as rectangles with rounded cor-
ners, with the state name shown inside the rectangle.  
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Fig. 13.2. State transition diagram of Car
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Transitions are shown by solid arrows from the source state to the target 
state, labeled with a transition string. For protocol state machines, the gen-
eral form of a transition string is: 

[guard] event/postcondition 

where both the guard and the postcondition are boolean expressions. Each 
transition must have an event, and may or may not have a guard and a 
postcondition. The semantics of a transition depends on the kind of event, 
as explained below. 

 UML distinguishes four kinds of event that can trigger transitions: 

• Call event. An occurrence of this kind of event happens when there is an 
invocation of an operation defined in the entity type which the transition 
diagram is associated with. 

• Change event. An occurrence of this kind of event occurs when the 
value of a boolean condition changes from false to true. 

• Time event. Events of this kind occur when a time expression is 
satisfied. The expression may refer to an absolute time or to the passage 
of a given amount of time after an entity enters a state. 

• Signal event. Events of this kind occur when an entity receives a signal. 
We shall not use these events in this chapter. 

For call events, the semantics of a transition involves the transition 
string and the preconditions and postconditions of the corresponding op-

Fig. 13.3. State transition diagram of Rental
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eration. Assume an operation Op with a precondition Pre_Op and post-
condition Post_Op. The semantics of a transition with a string 

[guard] event / postcondition 

between a source s and a target t state is the following. When 

• an entity e is in the source state s, and 
• there is an invocation of the operation Op to the entity e (call event), and 
• the precondition Pre_Op is satisfied, and 
• the guard is satisfied, 

then 

• the entity e changes to the target state t, and 
• the information base satisfies the postcondition Post_Op, and 
• the information base also satisfies the postcondition specified in the 

transition string. 

In addition, it is assumed that the static integrity constraints are satisfied 
both before and after the invocation of the operation. 

All the events shown in the example in Fig. 13.2 are call events. There-
fore, the entity type Car will include one operation for each of them. In 
general, if there is an operation that is not referred to by any transition of a 
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protocol state machine, then the operation can be called in any state of the 
protocol state machine, and does not change the current state. 

 Figure 13.4 shows a fragment of a structural schema, including the call 
event operations in Car. The preconditions and postconditions of these op-
erations must be specified in some way. Consider, for example, the opera-
tion Transfer. Its specification in OCL might be 
context Car::transfer(transferredTo:Branch) 

pre theCarIsFree: not assigned 
pre currentlyOwned: owner->notEmpty() 
post notOwned: owner->isEmpty()  
post transferCreated: 
  t.oclIsNew() and  
  t.oclIsTypeOf(TransferOfCar) and  
  t.dateSent = CurrentDate and  
  t.car = self and  
  t.source = self.owner@pre and  
  t.destination = transferredTo  

A Transfer event can occur only when the car is in the state Available, it 
is not assigned to any rental, and it is owned by some branch. The effect of 
the event is that the car is now in the state InTransfer, that it is not owned 
by any branch, and that an instance of the entity type TransferOfCar has 
been created, with the corresponding values for its attributes and links. 

Note that, in the example of the call event Transfer, the transition has 
neither a guard nor a postcondition, but the operation has a precondition 
and a postcondition. An alternative could have been the transition shown 
in Fig. 13.5 with a guard and a postcondition, and then the specification of 
the operation would just be 
context Car::transfer(transferredTo:Branch) 

post: True 

In Fig. 13.5 we have shown only the names of the guard and of the post-
condition. The corresponding specification would need to be given else-
where. 

As another example, consider the call event Reception. The specifica-
tion of its operation in OCL might be: 

[theCarIsFree and currentlyOwned] Transfer/
notOwned and transferCreated

Available InTransfer

Fig. 13.5. Alternative specification of the Transfer transition

[theCarIsFree and currentlyOwned] Transfer/
notOwned and transferCreated

Available InTransfer

[theCarIsFree and currentlyOwned] Transfer/
notOwned and transferCreated

Available InTransfer

Fig. 13.5. Alternative specification of the Transfer transition
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context Car::reception(receivingBranch:Branch) 
post theBranchOwnsTheCar: owner = receivingBranch 
post transferCompleted:  
  let pendingTransfer:TransferOfCar = transferOfCar 
        ->select(dateReceived@pre->isEmpty())->any(true) 
  in pendingTransfer.dateReceived = CurrentDate 

A Reception event can occur only when the car is in the state InTrans-
fer. The effect of the event is that the car is now in the state InCheck-
ing&Preparation, that it is owned by the receiving branch, and that the 
pending transfer is now complete. 

When an event appears in only one transition (as happens in all events 
shown in Fig. 13.2), it is practical to define only the preconditions and 
postcondition of the corresponding operation, thus making unnecessary the 
use of the guard and the postcondition of the transition.  

When the same event appears in two or more transitions, it is practical 
to define the common part of the guard in the precondition of the opera-
tion, and the common part of the postconditions in the operation postcon-
dition. In Fig. 13.3, the event Extension may trigger three transitions, but 
its precondition and effect are the same in the three cases and therefore 
they are defined in the corresponding operation: 
context Rental::extension(newEndDate:Date) 

post: endingDate = newEndDate 

13.3.1 Transitions Triggered by Change and Time Events 

When the event that triggers a transition 

[guard] event/postcondition 

is a change or time event, the semantics of the transition is simpler, be-
cause it does not involve any operation. The semantics is the following. 
When 

• an entity e is in the source state, and 
• the event occurs, and 
• the guard is satisfied, 

then 

• the entity e changes to the target state, and 
• the information base satisfies the postcondition. 

In addition, it is assumed that the static integrity constraints are satisfied 
both before and after the invocation of the operation. 

In the Fig. 13.3, we have an example of a time event in the transition 
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[guaranteed] end of scheduledPick-UpDay/creditCardCharged 

The meaning is that if a rental has been guaranteed by credit card and the 
car has not been picked up by the end of the scheduled pickup day, one 
day’s rental is charged to the credit card and the rental is canceled. 

Transitions triggered by change and time events are important in many 
conceptual modeling languages because they are the only means by which 
we can define some functions of the information system. When we must 
specify that something needs to be done when a condition over the infor-
mation base becomes true, or when a time expression is satisfied, then we 
need to use transition diagrams, and to define the corresponding transitions 
triggered by a change or time event.  

This is illustrated in the above example. If one of the functions of the in-
formation system is to do something when “a car has not been picked up 
by the end of the scheduled pickup day”, we must attach this condition to a 
transition, in some transition diagram. The postcondition of the transition 
has to specify the effect of the time event. 

13.3.2 Unexpected-Event Reception 

In UML, the interpretation of the reception of an event in an unexpected 
situation (current state and guard) is a semantic variation point: the event 
can be ignored, rejected, or deferred, an exception can be raised, or the ap-
plication can stop on an error.  

13.3.3 Initial State 

We know that, at any time, an entity is in one and only one state. This im-
plies that when an entity e begins to be an instance of the corresponding 
entity type, e must be in some state. The question, then, is how do we spec-
ify the first or initial state of e? 

In UML the initial state is specified by a special kind of state, called –
not surprisingly – the initial state. Graphically, an initial state is shown as a 
small filled black circle with an outgoing transition. The meaning is that 
when an entity is created it is placed in the initial state, and its outgoing 
transition is automatically fired, moving the entity to another state. Figure 
13.2 shows an example. When a car is created, it is in the state InCheck-
ing&Preparation. Similarly, Figure 13.3 shows that when a rental is cre-
ated, it is in the state Pending. 

Note that the initial state does not behave like an ordinary state, because 
entities do not remain in it during a period of time. Instead, once they enter 
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that state, its outgoing transition is immediately fired, and thus the state is 
left.   

The initial state has an outgoing transition. The implicit trigger of this 
transition is the invocation of a creation operation. In the example of Fig. 
13.2, the creation operation is Purchase. This is a class operation because 
it creates new instances of Car. Its specification might be 
context  

Car::purchase(carRegistrationNumber:String,  
              initialMileage:Distance, buyer:Branch) 
post:  
  c.oclIsNew() and  
  c.oclIsTypeOf(Car) and  
  c.registrationNumber = carRegistrationNumber and  
  c.currentMileage = initialMileage and 
  c.acquisitionDate = CurrentDate and 
  c.owner = buyer 

The transition diagrams of constant entity types do not have initial 
states, because, by definition, instances of these types are never created. 

13.3.4 Final State 

When an entity ceases to be an instance of an entity type that has a transi-
tion diagram, it then, of course, ceases to be in any of its states. We can 
say that there is a transition from the last state which the instance was in to 
“nowhere”. Given that in UML the transitions involve two states, we need 
a state that means “nowhere”. This special state is called the final state. 
Graphically, it is shown as a circle surrounding a small solid filled circle 
(see Fig. 13.2).  

The transitions to the final state define the valid states in which an entity 
can cease to exist. In the example of Fig. 13.2, a car can cease to exist only 
if it is in the state Available. The effect of the event Sale is that the car 
ceases to exist in the company. 

The transition diagrams of permanent entity types do not have final 
states, because, by definition, instances of these types never cease to exist.  
In the present example, Rental is a permanent entity type. The state transi-
tion diagram of Fig. 13.3 does not have final states. 

13.3.5 Junction 

A junction is a pseudostate with at least one incoming and one outgoing 
transition. In general, the incoming transitions have a trigger, and both the 
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incoming and the outgoing transitions have a guard. A junction is repre-
sented by a small black circle. 

A junction provides a means to simplify two or more transitions by fac-
toring out their common parts. For example, a junction can be used to con-
verge multiple incoming transitions into a single outgoing transition repre-
senting a shared transition path. Conversely, a junction can be used to split 
an incoming transition into multiple outgoing transition segments with dif-
ferent guard conditions. 

Figure 13.6 shows the use of a junction to simplify four transitions: 

• The transition from A to C triggered by e1 and guarded by the condition 
[c1 and c3]. 

• The transition from A to D triggered by e1 and guarded by the condition 
[c1 and c4].  

• The transition from B to C triggered by e2 and guarded by the condition 
[c2 and c3]. 

• The transition from B to D triggered by e2 and guarded by the condition 
[c2 and c4].  

In this example the common part is that the target state is C or D depend-
ing on whether condition c3 or c4 is true. 

When an incoming transition fires, an outgoing transition whose guard 
evaluates to true also fires immediately. An incoming transition may fire 
only if there is an outgoing transition that also fires. If multiple outgoing 
transitions have guards that are true, an arbitrary one is selected. A prede-
fined guard denoted “else” may be defined for at most one outgoing transi-
tion. This transition fires if all the guards labeling the other transitions 
evaluate to false.  

[c1] e1

[c2] e2

[c3]

[c4]

DB

CA

Fig. 13.6. Example of use of a junction pseudostate
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Fig. 13.6. Example of use of a junction pseudostate
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Junctions are considered as static conditional branches because the 
guards of both the incoming and outgoing transitions are evaluated before 
the transitions fire. In the example of Fig. 13.6, the conditions c3 and c4 
are evaluated at the same time as c1 and c2, that is, before the firing of the 
transitions. 

13.3.6 Choice 

A choice is a pseudostate similar to a junction, but the guards of the outgo-
ing transitions are evaluated once the incoming transitions have produced 
their effect. Choices are considered as dynamic conditional branches be-
cause the target state is not known until the operations associated with the 
incoming transitions have been completed. A choice pseudostate is shown 
by a diamond-shaped symbol. 

Another important difference from junctions is that the guard of at least 
one outgoing transition must evaluate to true. If more than one of the 
guards evaluates to true, an arbitrary one is selected. If none of the guards 
evaluates to true, then the state machine is considered ill-formed: we may 
avoid this by defining one outgoing transition with the predefined “else” 
guard. 

Figure 13.7 shows an example. The target state of the transition leaving 
from A is not determined until the operation corresponding to the trigger 
e1 has been completed. Then, if the guard c2 evaluates to true, the target 
state is C; otherwise, it is B. 

Fig. 13.7. Example of use of a choice pseudostate
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13.4 From Domain and Action Request Events to Call 
Events 

None of the four kinds of UML event correspond directly to the domain 
and action request events that we studied in the two preceding chapters. 
However, we can establish a clear mapping between these events and call 
events. The mapping is through the invocation of operations. If an event 
Event maps to a call event CallEvent that appears in the transition diagram 
of an entity type E, then the effect of Event includes an invocation of the 
operation corresponding to CallEvent to the appropriate instance of E. 

The idea is to define events as we did in the preceding chapters, but to 
change the definition of an effect. Now an effect is an invocation of the 
operations of the entity types associated with the state machines that must 
receive an event. The global effect of the event will be the union of the ef-
fects in the state machines invoked. The effect in each state machine is as 
described before. 

Consider, for example, the Transfer domain event, shown in Fig. 13.8. 
Its characteristics are the car being transferred and the destination branch. 
The event constraints are that the car must be available, free, and currently 
owned by a branch. If the effect of the event were defined as we described 
in the previous chapters, its specification would be 

Fig. 13.8. Definition of the domain event Transfer
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context Transfer::effect() 
post notOwned: car.owner->isEmpty()  
post transferCreated: 
  t.oclIsNew() and  
  t.oclIsTypeOf(TransferOfCar) and  
  t.dateSent = CurrentDate and  
  t.car = self.car and  
  t.source = self.car.owner@pre and  
  t.destination = self.destination and 
  t.car.state = CarState::InTransfer 

where we have assumed that cars have a new attribute, state, which gives 
the current state of each car (InTransfer after a transfer event). 

When cars are modeled by state machines, parts of the constraints and 
effect of an event move to the state transition diagram and the operations. 
A revised definition of Transfer is shown in Fig. 13.9. The constraints that 
the car must available, free, and currently owned by a branch have been 
moved from Fig. 13.8 to the state machine of Car. Now, the postcondition 
of the effect() operation is just the invocation of the corresponding opera-
tion in Car: 
context Transfer::effect() 

post: car^transfer(destination) 

The parameters of the operations invoked are the characteristics of the 
event that are relevant to the receiving state machine. In general, however, 
it may be better to define only one parameter in these operations: the event 
that has happened. In this way, the invocations are simple, uniform and 
flexible. For these reasons, from now on we shall define the call event op-
erations with a single parameter. Thus, the specification of the above op-
eration would be: 
context Transfer::effect() 

post: car^transfer(self) 

Fig. 13.9. Revised definition of the domain event Transfer
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and the signature and specification of the operation in Car would now be 
context Car::transfer(event:Transfer) 

pre theCarIsFree: not assigned 
pre currentlyOwned: owner->notEmpty() 
post notOwned: owner->isEmpty()  
post transferCreated: 
  t.oclIsNew() and  
  t.oclIsTypeOf(TransferOfCar) and  
  t.dateSent = event.time.date and  
  t.car = self and  
  t.source = self.owner@pre and  
  t.destination = event.destination  

When the same event is input to two or more state machines, the effect 
of the event includes an invocation of each of them. We have an example 
in the event Pick-Up (see Fig. 13.10), which is input to both the rental 
given as characteristic and the allocated car: 
context Pick-Up::effect() 

post: rental^pick-Up(self) and rental.car^pick-Up(self) 

13.4.1 Localization of Event Constraints and Effects 

The mapping between domain and call events described above allows the 
constraints and the effect of an event to be defined in three different 
places: 

• the event type; 
• the preconditions and postconditions of the call event operations; 
• the guards and postconditions of the state transition diagrams. 

The complete set of constraints that an event must satisfy is the union of 
the set of constraints defined in each of these three places. Similarly, the 
global effect of an event is the union of the effects defined in these three 

Fig. 13.10. Definition of the domain event Pick-Up
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places. It is not difficult to obtain automatically the complete set of con-
straints and the whole effect of an event. A supporting tool for conceptual 
modeling should be able to obtain it when requested. 

The mapping allows the behavioral schema to be defined in three differ-
ent styles: 

• Event-type-centered. All constraints are defined in the event type, 
except those that define the valid state transitions (which are defined in 
the transition diagrams). The effect of an event is defined in the effect() 
operation of the event type, except for the change of state (which is de-
fined in the transition diagrams). 

• Operation-centered. Now, the purpose of the effect() operation of the 
event type is just to invoke the call event operations of the affected 
entities. The only constraints defined in the event type are those that 
check the existence of these entities. The other constraints are defined in 
the operations, except those that define the valid state transitions (which 
are defined in the transition diagrams). The effects of events are defined 
in the operations invoked, except for the change of state (which is de-
fined in the transition diagrams). 

• Transition-centered. As before, the only constraints defined in the event 
type are those that check the existence of the entities affected by an 
event, and the purpose of the effect() operation of the event type is to 
invoke the corresponding operations of the affected entities. The 
operations invoked do nothing, except to provide a link between event 
types and transition diagrams. The other constraints are defined in the 
transitions included in the transition diagrams. The effects of events are 
defined in the transitions also. 

The above are pure styles. The definition of the constraints and effect of 
a given event does not need to follow any one of them strictly. A hybrid 
style is also possible. For example, it may be sensible to localize most of 

Fig. 13.11. Definition of the action request event Return in the event-type-based style
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the constraints and most of the effect in the preconditions and postcondi-
tions of the operations invoked. At the event type level, we may define the 
constraints that ensure that the affected entities do exist, and the effect that 
invokes the corresponding operations. In the transition diagram, we may 
define the changes of state and those constraints and effects which are spe-
cific to the transitions. 

By way of illustration, consider the request type Return. Using the 
event-type-centered style, the complete definition of the constraints and ef-
fect would be as follows: 

1. In the event type, we define the characteristics and constraints shown 
in Fig. 13.11. The constraints are that the car, the rental, and the 
receiving branch must exist. There is also the constraint that the car 
must be returned to the expected drop off branch: 

 context Return::returnWhereExpected():Boolean 
   body: branch = rental.dropOff 

The effect of the event is 
 context Return::effect() 
    post notifyTheCarStateMachine: car ^ return(self) 
    post notifyTheRentalStateMachine: rental ^ return(self) 
    post recordReceivingTime: rental.returnTime = time 

2. The specification of the return() operation in the two entity types is 
trivial: 

 context Car::return(event:Return) 
    post: True 
 context Rental::return(event:Return) 
     post: True 

3. In the state transition diagrams, the transitions triggered by a Return 
event are defined as shown in Figs. 13.2 and 13.3. 

In the operation-centered style, the complete definition of the constraints 
and effect would be as follows: 

1. In the event type we define the characteristics and constraints shown 
in Fig. 13.12. Note that there are only two constraints: the car and the 
rental must exist. The effect of the event is: 

  
context Return::effect() 
    post notifyTheCarStateMachine: car ^ return(self) 
    post notifyTheRentalStateMachine: rental ^ return(self) 

2. The specification of the return() operation is now 
context Car::return(event:Return) 
  post: True 
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context Rental::return(event:Return) 
  pre returnWhereExpected:  
          self.dropOff.name = event.branchName 
  post recordReceivingTime: self.returnTime = time 

3. In the state transition diagrams, the transitions triggered by a Return 
event are defined as shown in Figs. 13.2 and 13.3. 

In the transition-based style, the complete definition of the constraints 
and effect would be as follows: 

1. The definition in the event type is the same as in the previous case 
(see Fig. 13.12).  

2. The specification of the return() operation in the two entity types is 
trivial: 

context Car::return(event:Return) 
  post: True 
context Rental::return(event:Return) 
  post: True 
 

3. In the transition diagram of Car, the transition triggered by a Return 
event is defined as in the previous styles (and is shown in Fig. 13.2). 
The transition string of the transition triggered by Return in the transi-
tion diagram of Rental is different from that shown in Fig. 13.3. Now 
it is 

[dropOff.name = event.branchName] Return/returnTime = event.time 
 

Fig. 13.12. Definition of the action request event Return in the operation-
centered and transition-centered styles
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13.5 Entity Types with Multiple State Transition Diagrams 

An entity may have several state machines, each one described by a differ-
ent transition diagram. An entity is at any time in one (and only one) state 
in each machine. This means that an entity type may have several transi-
tion diagrams. Each diagram defines the set of states which an entity may 
be in from some point of view.  

For example, from the point of view of availability, a car may be in the 
states shown in Fig. 13.2. Independently of availability, from the point of 
view of saleability, a car may be in the two states (NotForSale, ToBeSold) 
shown in Fig. 13.13. Cars are to be sold when they reach one year old or 
40,000 km, whichever occurs first. At any time, a car is in one state of 
availability and in one state of saleability. 

The transition diagrams of an entity type do not have common states. 
Each transition diagram must have its own set of states, and a state belongs 
to only one transition diagram.  

The transition diagrams of an entity type may or may not have events in 
common. Assume that an entity type has two transition diagrams, A and B. 
When an event type Ev appears in A but does not appear in B, the meaning 
is that occurrences of Ev are ignored in the state machines defined by B. In 
other words, B does not define any additional constraint or effect for the 
occurrences of Ev. For example, consider the transition diagrams shown in 
Figs. 13.2 and 13.13. The event type Pick-Up appears only in Fig. 13.2. 
This means that the transition diagram of Fig. 13.13 does not define any 
additional constraint for it, nor any additional effect. 

When an event type Ev appears in two transition diagrams A and B, an 
occurrence of Ev may trigger a transition in the state machines defined by 
both A and B. In this case, B defines additional constraints and effects for 
the occurrences of Ev. In particular, an event may satisfy the constraints 

Fig. 13.13. Another transition diagram of Car
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defined in A but not satisfy those defined in B. Similarly, the effects of the 
occurrence of an event are defined partly in A and partly in B. 

The diagram shown in Fig. 13.13 has three events in common with that 
in Fig. 13.2: Purchase, Transfer, and Sale. The additional constraints and 
effects of these events that are defined in Fig. 13.13 are: 
 
• Purchase. The additional effect is that when a car is created, it is in the 

state NotForSale. 
• Transfer. The additional constraint is that Transfer events can occur 

only when cars are in the state NotForSale. It is not permissible to 
transfer a car that is to be sold. 

• Sale. The additional constraint is that Sale events can occur only when 
cars are in the state ToBeSold. It is not permissible to sell a car that is in 
the NotForSale state. 

13.6 Bibliographical Notes 

There are many good textbooks on the theory of automata. (Hopcroft et al. 
2001) is the second edition of a classical textbook on this topic. 

The use of state machines for behavioral schemas has a long tradition in 
conceptual modeling. Ferrentino and Mills (1977) noted that “state 
machines provide a convenient and indispensable mathematical framework 
for defining precise specifications of complex software systems”. Davis 
(1988) gave one of the first analyses of the use of state transition diagrams 
for behavioral modeling, including a comparison with alternative ap-
proaches. 

Many conceptual modeling languages approach behavioral modeling by 
using state transition diagrams (and their extensions). Among the first lan-
guages that took that approach, there are OOA (Shlaer and Mellor 1992), 
OMT (Rumbaugh et al. 1991), and OSA (Embley et al. 1992). Other lan-
guages, such as OO–Method (Pastor et al. 2001) use state transition dia-
grams only for entity life cycle modeling.   

EU-Rent is a widely known case study of business rules. The initial re-
port was published in 1995. Business Rules Group (2000) is the third edi-
tion of that report. 
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13.7 Exercises 

13.1 Consider the transition diagram of Car shown in Fig. 13.2. Give an 
example of a complete and legal life cycle and an example of a complete 
and illegal life cycle. 
 
13.2 In a junction pseudostate, an incoming transition may fire only if 
there is an outgoing transition that also fires. Justify this rule. Give an ex-
ample that would violate this rule. 

 
13.3 Define the domain event type Extension of the EU-Rent case study 
using the transition-centered style. 

 
13.4 Consider an information system that records information about a 
community of people, their marital status, and their marriage relationships. 
A person may be alive or dead. A living person’s marital status may be 
single, married, divorced or widowed. Assume that the relevant domain 
events (and characteristics) are: 

- Birth (name:String, sex:Sex) 
- Death (dead:Person). The death of a married person implies that his 

or her spouse becomes widowed. 
- Marriage (husband:Man, wife:Woman) 
- Divorce (spouse: Person). The person given is any of the two 

spouses. 

Define: 

1. The structural schema. 
2. The state transition diagram for the entity type Person, with at least 

one state for each possible marital status. 
3. The above domain events, with the corresponding characteristics and 

event constraints.  If you wish, you may change the indicated types of 
the characteristics. 

4. The domain event effects. Use whichever mapping style that you pre-
fer for this case. 



14 Statecharts 

In this chapter, we study statecharts. Statecharts are an extension of the 
state transition diagrams that we studied in the previous chapter. State-
charts can be defined in UML. The main extensions provided by state-
charts are state hierarchies and parallelism. These are presented in Sects. 
14.1 and 14.2, respectively.  

Our main examples in this chapter continue the EU-Rent case study in-
troduced in the previous chapter. The details of the examples will be intro-
duced where they arise.  

14.1 The State Hierarchy 

As we have seen in the previous chapter, a state transition diagram (or, for 
short, transition diagram) defines a set of states which entities of a given 
type may be in during their existence, and the allowed state transitions. An 
entity type may be associated with zero, one, or more transition diagrams. 
Each diagram defines the states of some entities according to a given per-
spective.  For example, Figure 14.1 (reproduced from the previous chapter) 
shows a transition diagram of the entity type Car according to its availabil-
ity. The diagram defines that a car may be Available, InTransfer, InCheck-
ing&Preparation, or InUse, and the allowed transitions between these 
states. 

One of the drawbacks of transition diagrams is that they are “flat”, in the 
sense that they do not provide a means to easily represent substates of a 
state. For example, assume that we need to distinguish three substates of 
the state InUse (see Fig. 14.1): 

• NormalUse. A car is in this state if it is InUse, it has not been reported 
as broken, and it is not overdue.  

• Broken. A car is in this state if it is InUse, and the customer has reported 
that it is broken. 

• Overdue. A car is in this state if it is still InUse, but it has not been re-
turned by the scheduled ending date and is not broken. 
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In transition diagrams, we cannot depict both a state (such as InUse) and 
its substates. We might forget about the state and show directly the sub-
states, as we have done in Fig. 14.2, but it is easy to see that this solution 
does not scale well for systems that have many substates, where it would 
result in unstructured and chaotic transition diagrams. In particular, in Fig. 
14.2 we have had to define three transitions triggered by Return, one for 
each substate of InUse. 

 Statecharts allow us to explicitly represent the hierarchical relation be-
tween states and substates. Statecharts can be defined in UML. We shall 
follow the UML interpretations and notational conventions for statecharts 
in this chapter.  

14.1.1 Simple Composite States 

The states of a statechart can be simple or simple composite states. A sim-
ple state is a state that does not have substates. The transition diagrams 
that we studied in the preceding chapter consist of only simple states. A 
simple composite state is a state that can be decomposed into a set of mu-
tually exclusive disjoint substates and a set of transitions. Transitions are 
allowed to originate and terminate at any level. Figure 14.3 shows the 
statechart of the previous example in UML.1 InUse is a simple composite 
state; all the other states are simple.  

14.1.2 State Configuration and Entity Life Cycle 

If an entity is in a simple composite state, then it must also be in one of the 
substates of that state. If a car is in the state InUse, then it must also be in 
one of the three substates of InUse. Therefore, when a statechart has one or 
more simple composite states, an entity may be in several states at the 
same time. We call a set of states in which an entity may be at a given time 
a state configuration. The active state configuration of an entity is the state 
configuration that the entity has at a given time. In the example of Fig. 
14.3, when a car is overdue, its active state configuration is σ = {Overdue, 
InUse}. In transition diagrams, where all states are simple states, the state 
configurations are singletons. 

                                                      
1 In some cases, it is convenient to hide the decomposition of a composite state. 

The composite state may then be represented by a simple-state graphic with a 
special icon, and the content of the composite state may be shown in a separate 
diagram. 
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In a statechart, the life cycle γ of an entity e at a time point t is the se-
quence of state configurations σ1,…, σn which e has been in since its crea-
tion until t. Statecharts define the set of legal life cycles. For example, a 
legal life cycle of car, according to the statechart of Fig. 14.3, could be 

γ = {{InChecking&Preparation}, {Available},  
{InUse, NormalUse}, {InUse, Broken}} 

14.1.3 Initial Pseudostate 

A simple composite state s may have at most one initial pseudostate, which 
is the source for a single transition to a substate of s, called the default 
state of s. A transition to the enclosing state represents a transition to its 
default state. In Fig. 14.3, InUse has an initial pseudostate with a transition 
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Fig. 14.3. Statechart of Car with the state InUse and its three substates
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to NormalUse. Transitions to InUse (such as that triggered by Pick-Up) 
represent a transition to the default state NormalUse.  

A transition may go directly to a substate of a simple composite state. 
Figure 14.4 shows an example: the event f triggers a transition that goes di-
rectly to B, a substate of A. 

14.1.4 Conflicting Transitions 

Figure 14.3 shows a transition whose source is a simple composite state. 
The transition is enabled when an event Return occurs and a car is in the 
state InUse, independently of the substate that the car is in.  

A conflict may occur when two transitions are enabled at the same time, 
one originating in a particular state and the other in one of its containing 
states. Figure 14.4 shows an example. When the active state configuration 
is {B, A} and event e occurs, two transitions are enabled: one originating in 
B and one in A. Only one of the transitions may fire. In UML, the conflict 
is solved by the rule that a transition originating from a substate has a 
higher priority than a conflicting transition originating from any of its con-
taining states. By application of this rule to the above example, the transi-
tion that will fire is that emanating from B.  

14.2 Parallelism 

Up to now, we have seen two kinds of state in statecharts: simple states 
and simple composite states. A third kind is orthogonal states. An or-
thogonal state can be decomposed into two or more orthogonal regions. 
Each region has a set of mutually exclusive disjoint states and a set of tran-

Fig. 14.4. A is a simple composite state, with substates B and C
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sitions. A simple composite state has only one region. Orthogonal states 
and simple composite states are called composite states. Therefore, the 
states of a statechart may be simple or composite, and a composite state 
may be simple composite or orthogonal. The whole statechart may be con-
sidered as a composite state. Graphically, regions are separated by dashed 
lines. 

When an entity is in an orthogonal state, it must be in all of its regions. 
When the state configuration of an entity includes an orthogonal state, it 
must also include a state from each of its regions. 

Figure 14.5 shows an example. The whole statechart consists of an ini-
tial pseudostate, an orthogonal state (named Active), and a final state. Ac-
tive consists of two regions. The first region defines the states of a car ac-
cording to its availability, as we saw earlier in Fig. 14.1. The second region 
defines EU-Rent’s policy concerning the sale of cars: cars are to be sold 
when they reach one year old or 40,000 km, whichever occurs first. Ini-
tially, a car is in the state NotForSale. When the condition “currentMileage 
> 40,000 km” changes from false to true (a change event), the car enters 
the state ToBeSold. The same happens when the time condition “Current-
Date - acquisitionDate > 1 year” becomes true.  
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When an entity is in the state Active, it must also be in the two regions. 
An example of a state configuration could be  

 σ = {Active, InUse, ToBeSold} 

Orthogonal states are sometimes called “AND decompositions” because 
they require the entity to be in each of the components (regions) of the 
state. Simple composite states are called “OR decompositions” because 
they require the entity to be in one (and only one) of the components 
(states). 

14.2.1 Initial Pseudostate 

Each region r of an orthogonal state s may have at most one initial pseu-
dostate, which is the source of a single transition to a substate of r, called 
the default state of r. A transition to the enclosing state s represents a tran-
sition to the default state in each of its regions.  

If a transition explicitly enters one region of an orthogonal state, this re-
gion is entered explicitly and the default states of the other regions are en-
tered implicitly. 

In the example of Fig. 14.6, each of the three regions has an initial pseu-
dostate. When the transition triggered by e1 is fired, the entity enters states 
A1, B1 and C2. When the transition triggered by e2 is fired, the entity enters 
states C1, A1, and B1.  

An orthogonal state s must have an initial pseudostate in each of its re-
gions if there are one or more transitions whose target is s. In the example 
of Fig. 14.5 the two regions of Active do not have initial pseudostates, be-
cause there are no transitions whose target is the state Active. 

Fig. 14.6. Example of orthogonal state OS with three regions

A1

e4

Os

A2

B1 B2

C1 C2

e1

e2

e3

e4

e3

D
e5

A1

e4

Os

A2

B1 B2

C1 C2

e1

e2

e3

e4

e3

DD
e5

Fig. 14.6. Example of orthogonal state OS with three regions

A1

e4

Os

A2

B1 B2

C1 C2

e1

e2

e3

e4

e3

D
e5

A1

e4

Os

A2

B1 B2

C1 C2

e1

e2

e3

e4

e3

DD
e5



332      14 Statecharts 

14.2.2 Firing Multiple Transitions 

In the presence of orthogonal states, it is possible to fire multiple transi-
tions as a result of the same event occurrence, as many as one transition in 
each region of such a state. When two or more transitions in different re-
gions of an orthogonal state are enabled, all of them will be fired simulta-
neously. 

In Fig. 14.5, if the active state configuration of a car is {Active, Avail-
able, NotForSale}, and an event Transfer occurs for that car, two transi-
tions become enabled, one in each region. Both of them will be fired si-
multaneously. 

A conflict may occur when two transitions are enabled at the same time, 
one originating in a region and the other in the enclosing state. Figure 14.6 
shows an example. When the active state configuration includes the state 
B1 and event e4 occurs, two transitions are enabled: one originating in B1 
and one in the enclosing state. Only one of the transitions may fire. In 
UML, the conflict is solved by the rule that a transition originating from a 
substate has higher priority than a conflicting transition originating from 
any of its containing states. By application of this rule to the above exam-
ple, the transition that will fire is that emanating from B1.  

14.2.3 Fork 

A fork is a pseudostate with only one incoming transition, and two or more 
outgoing transitions terminating on states in different regions of an or-
thogonal state. The transitions outgoing from a fork must not have guards 
or triggers. The notation for a fork is a short, heavy bar. 

A fork is used to specify a transition to an orthogonal state when we do 
not want to enter the default states of each region of that state. The com-
bined semantics of a fork, its incoming transition, and its outgoing transi-
tions is essentially the same as that of its incoming transition. The only dif-
ference is that the target is a state in each of the (two or more) regions of 
an orthogonal state. The target states are those of the outgoing transitions 
and, if there are more regions, the default states of the remaining regions. 

There is an example in Fig. 14.5 on the right. The source of the incom-
ing transition is an initial pseudostate. The targets of the two outgoing tran-
sitions are the states InChecking&Preparation and NotForSale. The trigger 
of the transition is the event Purchase. The semantics is that an occurrence 
of the event Purchase creates a car with the state configuration {Active, 
InChecking&Preparation, NotForSale}. 
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Note that forks are pseudostates. A fork does not behave like an ordi-
nary state, because entities do not remain in it during a period of time. In-
stead, once they enter a fork, its outgoing transitions are immediately fired, 
and thus the pseudostate is left.   

14.2.4 Join 

A join is a pseudostate with two or more incoming transitions originating 
in different regions of an orthogonal state, and exactly one outgoing transi-
tion. The incoming transitions must not have guards or triggers. The nota-
tion for a join is again a short, heavy bar. 

A join is used to specify a transition from two or more regions of an or-
thogonal state. The combined semantics of a join, its incoming transitions, 
and its outgoing transition is essentially the same as that of its outgoing 
transition. The only difference is that the transition is enabled when the en-
tity is in two or more states of an orthogonal state. The source states are 
those of the incoming transitions. 

There is an example in Fig. 14.5 on the left. The sources of the incom-
ing transitions are the states Available and ToBeSold. The target of the 
outgoing transition is the final state. The trigger of the transition is the 
event Sale. The semantics is that an occurrence of the event Sale finishes 
the life cycle of a car if its active state configuration is {Active, Available, 
ToBeSold}. 

Figure 14.6 also contains a join. The transition will be enabled when the 
active configuration state includes the states A2 and B2 and event e5 occurs. 
If the transition fires, the entity will leave the state OS and enter the state 
D. 

14.3 Bibliographical Notes 

(Harel 1987) was the first (and the classical) paper on statecharts. Harel 
and Naamad (1996) described the precise semantics of statecharts as im-
plemented in a commercial system. Crane and Dingel (2005) surveyed the 
existing formalisms for statechart modeling and presented a classification 
of their differences. Wieringa (2003) discussed possible choices in the 
execution semantics of statecharts. Eshuis et al. (2002) distinguished be-
tween requirements-level and implementation-level semantics of state-
charts, and defined an execution semantics for requirements-level state-
charts. 
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(Coleman et al. 1992) was one of the first attempts to integrate of state-
charts and object-oriented design. Harel and Gery (1997) presented what 
can be considered the currently accepted integration.  

Analysis of the consistency of statecharts with the structural schema was 
studied by Formica and Frank (2002), but this is a topic that needs more 
research.  

Statechart specialization is another research topic for which a satisfac-
tory solution has not been reached yet, at least at the conceptual level. The 
main references are (Schrefl and Stumptner 2000, 2002). See also (Harel 
and Kupferman 2002, Van Der Straeten et al. 2004) for alternative ap-
proaches. 

14.4 Exercises 

14.1 Consider the statechart of Car shown in Fig. 14.5. Give an example of 
a complete and legal life cycle and an example of a complete and illegal 
life cycle. 

 
14.2 Consider an information system for supporting the activities of a li-
brary. A book may be available, on hold, or on loan, and may be reserved 
or nonreserved. When a user borrows a book that is available or on hold, 
that book becomes on loan. When a nonreserved book is returned, it be-
comes available. A book can be reserved by at most one user. A reserved 
book cannot be reserved by another user.  

When a book is returned, if it is reserved by another user it becomes on 
hold, and the system sends an email to that user requesting him to collect 
the book. If the book is not collected within one week, the reservation is 
automatically canceled and the book becomes available.  

Assume that the relevant domain events (and characteristics) of this 
system are: 

• Purchase (isbn:ISBN, title:String). The library has only one copy of 
each book. 

• Loan (book:Book, user:User) 
• Return (book:Book) 
• Reservation (book:Book, user:User) 
• Renewal (book:Book). A user renews the loan of a book. A book can be 

renewed only if there is no reservation for the book. 
• Loss (book:Book). The book ceases to exist in the library. 
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Define: 

1. The structural schema. 
2. The statechart for the entity type Book, with an orthogonal state. 
3. The above domain events, with the corresponding characteristics and 

event constraints.  If you wish, you may change the indicated types of 
the characteristics. 

4. The domain event effects. Use whichever mapping style that you pre-
fer for this case.  



15 Use Cases 

We know that a conceptual schema defines the general knowledge re-
quired by an information system to perform its functions. But what are the 
functions of the information system, and what is the knowledge required to 
perform them? Currently, the answer to these questions is based on the use 
cases. Use cases define the functionality provided by an information sys-
tem. The use cases of an information system are determined during re-
quirements elicitation, one of the most important phases of requirements 
engineering. 

A detailed study of use cases is beyond the scope of this book. The in-
terested reader may find a few key bibliographical references at the end of 
this chapter. The purpose of this chapter is to briefly review the concept of 
a use case and explain its relationship to the conceptual schema. We begin 
in Sect. 15.1 by identifying the kinds of actor that interact with an informa-
tion system. Then, in Sect. 15.2, we deal with use cases and their specifica-
tion. Finally, in Sect. 15.3, we explain the mapping of use cases to re-
quests.  

Our main examples in this chapter continue the EU-Rent case study in-
troduced earlier. The necessary details of the examples will be given where 
they arise.  

15.1 Actors 

In general usage, an actor is someone who plays a role in a play or film. In 
the field of information systems, an actor is a role played by a physical en-
tity that interacts with an information system. The physical entity may be a 
person, an organization, or another system. A single physical entity may 
play any number of different roles in the same system and, conversely, a 
given actor can be played by several different entities. In some instances, a 
user role is a subtype of another, more general role, and represents a more 
specialized version of that role. The set of actors of a system is the external 
environment of that system.  
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There are several kinds of actor. A stakeholder is an actor who has a 
vested interest in the system. Stakeholders are people who use, build, or 
manage the system, or are affected in some way by its use. A primary ac-
tor is a stakeholder who has goals fulfilled through using services of the 
system. Typically, but not always, a primary actor initiates the interaction 
with the system. A supporting or secondary actor provides a service to the 
system. An offstage, or tertiary, actor is a stakeholder who is not a primary 
actor. The system itself is considered an internal actor. 

Some examples of actors in the EU-Rent system are:  

• Customer, a primary actor who uses the system to fulfill goals such as to 
reserve a car, cancel a reservation, or extend a rental. 

• Payment Authorization Service, a supporting actor that provides au-
thorizations of customer payments to the EU-Rent system.  

• Police, an offstage actor that must be informed by the system when a car 
is several days overdue. 

In UML, an actor is represented by a “stick man” icon with the name of 
the actor in the vicinity of (usually above or below) the icon; see Fig. 15.1 
for an example. In UML, the specialization/generalization relationship be-
tween actors is represented in the same way as for that between entity 
types. 

Actor names should follow the guidelines used for entity types, namely 
common nouns in the singular form, possibly with an adjective.  

15.2 Use Cases 

15.2.1 Definition 

An information system usually serves many actors, to whom it provides 
many different services. The functionality provided by an information sys-
tem is too large to be analyzed as a single unit. We need a means of parti-

Customer

Reserve car

Fig. 15.1. Example of actor–use case association in UML

Customer

Reserve car

Customer

Reserve car

Fig. 15.1. Example of actor–use case association in UML
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tioning that functionality into smaller, more manageable pieces. The con-
cept of a use case is very useful for this purpose.  

A use case is a set of actions performed by a system which yields an ob-
servable result that is typically of value for one or more actors of the sys-
tem. Usually, the value is the achievement of a single business goal or 
task. The entire set of use cases of a system partitions it into pieces mean-
ingful to actors.  

An important use case for EU-Rent is Reserve car. In order to reserve a 
car, the system must perform a set of actions, which achieve the goal of 
making a car rental reservation. This goal is of value for the customer, the 
managers and the entire company. 

Each use case has a name, which should capture its essence. A sug-
gested guideline is to name a use case with an active-verb phrase that 
represents the goal or task.  

A scenario is an execution of a use case with particular actors and in a 
particular state of the information base. A use case may be seen as a type 
whose instances are scenarios. A scenario is one path through the set of ac-
tions of its use case. In general, a scenario does not include all the actions 
of its use case. 

In UML, a use case is shown as an ellipse, either containing the name of 
the use case or with the name of the use case placed below the ellipse; see 
Fig. 15.1. 

15.2.2 Use Case Actors 

The actors of a use case are the actors of the system who participate in the 
use case. With respect to a use case, actors may be classified as stake-
holders, or as primary, supporting, or offstage actors in the same way as 
we did for the actors of the system.  

The primary actor has a goal that can be satisfied by the execution of the 
use case. The primary actor is often, but not always, the actor who initiates 
the interaction with the system. Sometimes the primary actor may have an 
intermediary initiate the interaction. In other cases, a primary actor may 
request the system to trigger a use case when some event occurs. 

The primary actor of the example use case Reserve car is Customer. Al-
ternatively, the primary actor could be Clerk if we are sure that customers 
will not interact directly with the system, and then Customer would be an 
offstage actor.  

In UML, the participation of actors in use cases is shown by binary as-
sociations. Generally, the names of the association and of its two roles are 
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not shown, as the actor and the use case define the association uniquely. 
Figure 15.1 shows the Reserve car use case and its primary actor. 

Associations between actors and use cases may have multiplicities. 
When an actor has an association with a use case with a multiplicity that is 
greater than one at the use case end, it means that a given actor can be in-
volved in multiple use cases of that type. The specific nature of this multi-
ple involvement is not specified. Thus, an actor may initiate multiple use 
cases in parallel, or they may be mutually exclusive in time. On the other 
hand, a use case might require simultaneous action by several separate ac-
tors. 

15.2.3 Use Case Specification 

The specification of a use case describes the system’s behavior as a re-
sponse to a request from the primary actor. Use cases can be specified in 
several degrees of detail. In conceptual modeling, we are mostly interested 
in detailed specifications. On the other hand, there are two kinds of use 
case: essential and real. Essential use cases are technology-free and im-
plementation-independent, keeping the interface out and focusing on the 
actor’s intent. Real use cases include the details of the user interface and 
the actions performed by the users with it. Real use cases are refinements 
of essential use cases. Both kinds of use case are useful for the develop-
ment of the conceptual schema.  

There is no standard template for specifying use cases. There is, how-
ever, some agreement about the core sections. Two of these sections are 
the name and the primary actor of the use case. The others, which we de-
scribe below, are the scope, the stakeholders and interests, the precondi-
tions, the success guarantees, the trigger, the main success scenario, and 
the extensions. The following example of the Reserve car use case illus-
trates the sections of a specification: 
 
Use case: Reserve car 
Scope: EU-Rent system 
Primary Actor: Customer 
Stakeholders and interests: 
Customer: Wants to make a car rental reservation. 
Branch manager: Wants to ensure that the reservation can be honored. 
Company: Rentals requested by blacklisted customers must be refused. 
Company: Wants to ensure that customers receive the best price for their rental.  
Precondition: None. 
Success Guarantees: Reservation is saved. Reservation can be honored. Price is 
correctly calculated. 
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Trigger: The customer wants to make a rental reservation for a car. 
Main Success Scenario: 
1. The customer identifies himself. 
2. The system verifies that the customer has not been blacklisted. 
3. The customer describes the rental reservation he wants to make by specifying 
the rental period, the pickup branch, the drop-off branch, and the car group. 
4. The system verifies that the customer is allowed to make the reservation. 
5. The system verifies that there may be cars available in the desired car group for 
the duration of the rental. 
6. The system presents the price of the rental. 
7. The customer accepts the rental proposal. 
8. The system saves the reservation. 
9. The system confirms the rental reservation to the customer. 
Extensions: 
1a. The customer is new: 
 1a1. Create customer. 
2a. The customer has been blacklisted: 
 2a1. The system notifies customer. Use case ends. 
4a. The customer is not allowed to make the reservation: 
 4a1. The system notifies the customer. 
 4a2. The customer changes the rental period. 
  4a2a. The customer decides to exit: 
   4a2a1. Use case ends. 
5a. There are no cars available: 
 5a1. The system notifies the customer. 
 5a2. The customer changes the car group or the rental period. 
  5a2a. The customer decides to exit: 
   5a2a1. Use case ends. 
7a. The customer refuses the proposal: 
 7a1. The customer changes the car group or the rental period. 
  7a1a. The customer decides to exit: 
   7a1a1. Use case ends. 
7b. The customer wants to guarantee the rental: 
 7b1. The customer gives his credit card information. 
 
Typically, the scope of a use case is the system under design. However, it 
could be also the whole business, a business unit, or a system component. 

The stakeholders and interests section lists the actors that have an inter-
est in the behavior of the use case, and the specific interests that they have 
in it. In the present example, we describe three actors and their respective 
interests. 

The preconditions section states the conditions that must be true when 
an actor initiates a scenario. 

The success guarantees section defines what must be true either at the 
end of successful completion of the main success scenario or at the end of 
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a successful alternative path. The guarantee should satisfy the interests of 
all stakeholders. In the example, we define that at the end of a successful 
scenario the reservation made will be saved, the reservation can be hon-
ored by the pickup branch, and the customer gets the best price. 

The trigger section describes the starting condition that causes the initia-
tion of the use case. A Reserve car scenario starts when a customer wants 
to make a rental reservation for a car. 

The main success scenario describes the basic flow of a successful sce-
nario. It is written as a sequence of action steps, but the steps can be exe-
cuted in parallel or in a different order or can even be repeated. It is rec-
ommended that the steps should be numbered. An action step may be an 
interaction between two actors; a validation, performed usually by the sys-
tem; or an internal state change.  

In the example, the first step is an interaction between the customer and 
the system (identification), the second is a validation, the third is an inter-
action between the customer and the system (describing the reservation), 
the fourth and the fifth are system validations, the sixth is an interaction 
between the system and the customer, the seventh is an interaction be-
tween the customer and the system, the eighth is an internal change (the 
system records the reservation), and the last is an interaction between the 
system and the customer.  

The extensions section defines alternate flows when some condition is 
satisfied. An extension is related to an action step of the main success sce-
nario, and has two parts: a condition and a sequence of action steps. An ex-
tension can be seen as a miniature use case that may be triggered when the 
main success scenario is at the step indicated and the condition is satisfied. 
At the end of the extension, by default the scenario merges back with the 
main scenario, but it can end with the failure of the whole use case.  

In the example there are six extensions to the main success scenario (1a 
to 7b). In what follows, we shall make some comments on the first three. 
The code of the extension (such as 1a) gives the number of the step where 
the condition could be detected (1) and a letter (a) that identifies the condi-
tion in the step. Several extensions can be attached to the same action step. 
If it is necessary to define an extension that can be detected during any 
step, then we use a code starting with an asterisk, such as *a. 

Extension 1a states that if, in the first step, the customer is new then it is 
necessary to create a new customer.  In this case, the only action step (1a1) 
is the execution of another use case (Create customer), as we shall explain 
in the next subsection.   

Extension 2a defines what happens if the customer has been blacklisted. 
In this case, the system notifies the customer (2a1) and the use case fails. 
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In extension 4a the system detects that the customer is not allowed to 
make the reservation, because a customer may have only one car at any 
time or for some similar reason. There are two action steps in this exten-
sion: the system notifies the customer of the problem (4a1) and the cus-
tomer changes the rental period (4a2). Here we see an extension within an 
extension. If, in action step 4a2, the customer, instead of changing the 
rental period, decides to exit (condition 4a2a), then the use case fails. 

Sometimes an extension is defined as an explicit use case, as we shall 
see in the next subsection. 

15.2.4 Relationships Between Use Cases 

There are three main kinds of relationship between use cases: include, ex-
tend and specialization/generalization relationships. We study them in the 
following. 

An include relationship from a base use case to an inclusion use case 
means that the behavior defined in the inclusion use case is included in the 
behavior of the base use case. This is useful for extracting common behav-
iors from several use cases into a single description. The inclusion use case 
is not necessarily a separate instantiable use case. It may be a fragment. 
The common part is included by all the base use cases that have that inclu-
sion use case in common. Execution of an inclusion use case is analogous 
to a subroutine call.  

We have found an example of an include relationship in the above Re-
serve car use case: step 1a1 includes the use case Create customer in the 
extension 1a. The specification of this use case is as follows: 
 
Use case: Create customer 
Scope: EU-Rent system 
Primary Actor: Customer 
Stakeholders and interests: 
Precondition: The customer does not exist. 
Trigger: A new customer wants to make a rental car reservation. 
Main Success Scenario: 
1. The customer provides his personal information (name, address, date of birth). 
2. The customer provides the details of his driving license. 
3. The system records the information about the new customer. 
Extensions: 
1a. The customer is below 25: 
 1a1. The system notifies the customer. Use case ends. 
2a. The driving license is not valid or the customer does not have the required 
experience: 
 2a1. The system notifies the customer. Use case ends. 
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In UML, an include relationship between use cases is shown by a 

dashed arrow with an open arrowhead from the base use case to the inclu-
sion use case. The arrow is labeled with the keyword «include»; see Fig. 
15.2 for an example. 

An extend relationship from an extending use case to a base use case 
means that the behavior defined in the extending use case can be inserted 
into the behavior defined in the base use case. The extension takes place at 
one or more specific extension points defined in the base use case. The ex-
tension may be conditional: in this case, the extension takes place only if a 
condition holds when the first extension point is reached. 

The base use case is defined independently of the extending use case 
and is meaningful independently of the extending use case. An important 
difference between include and extend relationships is that in the former, 
the base use case is aware of (“sees”) the inclusion use case, while in the 
latter, the base use case is unaware of the possible extending use cases.   

One possible extension point in the Reserve car use case example could 
be Add extras, placed between action steps 6 and 7. The idea is that one or 
more use cases could extend the behavior of Reserve car by offering extras 

Fig. 15.2. Examples of relationships between use cases
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to the customer, such as a chauffeured service or additional equipment. For 
example, the following use case could extend Reserve car: 
 
Use case: Reserve chauffeured service 
Scope: EU-Rent system 
Primary Actor:  
Stakeholders and interests: 
Precondition: The customer is reserving a car. 
Success Guarantees: 
Trigger: The customer requests a chauffeured service. 
Main Success Scenario: 
1. The customer selects a chauffeured service. 
2. The system shows the price and other conditions of the service. 
3. The customer accepts the conditions. 
 

In UML, extension points are indicated by a text string in a compart-
ment of the use case ellipse named “extension points”. An extend relation-
ship between use cases is shown by a dashed arrow with an open arrow-
head from the extending use case to the base use case. The arrow is labeled 
with the keyword «extend»; see Fig. 15.2 for an example. The condition of 
the relationship and the references to the extension points may, optionally, 
be shown in a note attached to the corresponding extend relationship (not 
shown in Fig. 15.2). 

A specialization/generalization relationship between a child use case 
and a parent use case means that the child has the same behavior as the 
parent but may insert additional behavior into it.  

In UML, a specialization/generalization relationship between use cases 
is represented in the same way as between entity types. 

15.2.5 Use Case Model 

A use case model is a model that describes the use cases of a system. In 
UML, a use case model is described by a use case diagram, which shows 
the relationships between the actors and use cases, the generalizations be-
tween the actors, and the relationships between the use cases. Figure 15.2 
is a miniature use case diagram. UML does not provide further support for 
the specification of use cases. 
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15.3 Mapping Use Cases to Requests 

Use cases describe how actors interact with an information system. During 
this interaction, an actor generates action request events to the system, re-
questing the execution of some system action. The complete set of requests 
generated by a use case and their detailed characteristics can be determined 
only for real use cases.  

The set of use cases should be consistent with the set of requests defined 
in the behavioral schema. This consistency comprises two properties: 

• Each request generated by a use case should be defined in the behavioral 
schema. 

• Each request defined in the behavioral schema should be generated by 
one or more use cases. 

For essential use cases, we can determine only some requests that 
change the information base (including the domain event notifications), 
and a few queries. Some action steps in essential use cases are very ab-
stract, and their mapping to particular requests cannot be determined at this 
level. For example, step 1 of the Reserve car use case, “The customer 
identifies himself”, may be implemented in real use cases in several ways, 
each generating different requests. 

Most of the queries and the details of the communication between actors 
are not shown in essential use cases. For example, in a real Reserve car use 
case, the user interface could show lists of available car groups and of 
branches where to pick up and drop off the rented cars. Such lists make it 
easy for users to define the characteristics of a reservation. These lists are 
obtained by querying the information base.  

The mapping of use cases to the requests that may be generated during 
their execution can be documented in several ways. In the following, we 
describe three possibilities: textual references, creation dependencies, and 
sequence diagrams. 

As an illustration, we consider the Reserve car use case. The action re-
quest events that may be generated are the following domain event notifi-
cations1 and queries (Fig. 15.3 shows two domain events and a query):  

• NewReservation. A customer defines a new rental reservation.  
• PeriodChange. A customer changes the starting and/or ending date of a 

reservation. 
• CarGroupChange. A customer changes the car group of a reservation. 
                                                      
1 We shall omit the suffix Notification when it is clear from the context that we are 

referring to domain event notifications. 
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• Guarantee. A customer guarantees the reservation by means of a credit 
card. 

• Confirmation. A customer confirms the reservation made in the use 
case. 

• BlackListCheck. A query whose answer gives whether or not a customer 
is currently blacklisted. 

• PriceInfo. A query whose answer is the best price of a given rental. 

The Create customer use case generates a notification of the domain 
event NewCustomer. 

15.3.1 Textual References 

The simplest way of documenting the mapping of use cases to requests is 
by including textual references to requests near the places in the use case 
specification where they are generated. The exact form of the references 
may depend on the tools used. 

As an example, we reproduce below some parts of the specification of 
the Reserve car use case, including references to the action requests in the 
form [→ actionRequest]: 

Fig. 15.3. Examples of requests generated in the Reserve car use case
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Use case: Reserve car 
Main Success Scenario: 
1. The customer identifies himself. 
2. The system verifies that the customer has not been blacklisted [→ BlackList-
Check]. 
3. The customer describes the rental reservation he wants to make by specifying 
the rental period, the pickup branch, the drop-off branch, and the car group [→ 
NewReservation]. 
4. The system verifies that the customer is allowed to make the reservation. 
5. The system verifies that there may be cars available in the desired car group for 
the duration of the rental. 
6. The system presents the price of the rental [→ PriceInfo]. 
7. The customer accepts the rental proposal [→ Confirmation]. 
8. The system saves the reservation. 
9. The system confirms the rental reservation to the customer. 
Extensions: 
4a. The customer is not allowed to make the reservation: 
 4a1. The system notifies the customer. 
 4a2. The customer changes the rental period [→PeriodChange]. 
5a. There are no cars available: 
 5a1. The system notifies the customer. 
 5a2. The customer changes the car group or the rental period  
   [→ CarGroupChange], [→PeriodChange]. 
7a. The customer refuses the proposal: 
 7a1. The customer changes the car group or the rental period 
   [→ CarGroupChange], [→PeriodChange]  
7b. The customer wants to guarantee the rental: 
 7b1. The customer gives his credit card information [→Guarantee]. 

15.3.2 Creation Dependencies 

In UML, the simplest graphical way to represent the mapping of use cases 
to requests is by means of a usage dependency with the standard stereotype 
«create». The meaning is that the instances of a use case create instances 
of the action request type. 

Figure 15.4 illustrates this representation for the example of the Reserve 
car use case. 

15.3.3 Sequence Diagrams 

In UML, another graphical way to represent the mapping of use cases to 
requests is by means of sequence diagrams. A sequence diagram shows, 
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for one particular scenario of a use case, the action requests that the actors 
generate and their temporal order. 

Figure 15.5 illustrates this representation for the example of the Reserve 
car use case and its main success scenario. 
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15.4 Bibliographical Notes 

The origin of the concept of a use case can be traced back at least to the 
idea of event partitioning put forward by McMenamim and Palmer (1984). 
The modern view of use cases originated in the work of Ivar Jacobson in 
1986. Jacobson (2004) explained the origin and evolution of use cases. Use 
cases are sometimes confused with scenarios and related concepts. Rolland 
et al. (1998) provided a framework to classify the existing concepts and 
approaches.   

Cockburn (2001) was influential in defining what use cases are and how 
to write them effectively. Adolph and Bramble (2003) gave several useful 
patterns related to use cases. 

Currently, use cases are integrated into most development methodolo-
gies of information systems. Use cases are part of UML. Use cases may be 
used in several phases of the development life cycle. Alexander and 
Maiden (2004) described in detail the role of use cases and scenarios 
through the system development life cycle. Essential use cases were de-
scribed by Constantine and Lockwood (1999).  

The mapping of use cases to requests using textual references is very 
similar to that of use cases to operations defined by Sendall and Stroh-
meier (2000). Glinz (2000) described the use of textual references and de-
pendencies for the mapping of use cases to the structural schema. He also 
discussed the consistency of use cases with respect to the structural 
schema.  

Larman (2005) described the mapping of use cases to system events or 
operations. He proposed the use of system sequence diagrams for particu-
lar scenarios of a use case, and the use of preconditions and postconditions 
in the system operations as a precise specification of use cases. A some-
what similar approach was taken by Catalysis (D’Souza and Wills 1999) 
and OO-Method (Insfrán et al. 2002). 
 

15.5 Exercises 

15.1 Consider the use case Compose and send an email for your favorite 
webmail client. Write the main success scenario for it in two versions: es-
sential and real. 
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15.2 Visit the website of a car rental company that allows on-line reserva-
tions. Analyze the real use case that customers must execute to reserve a 
car in it. Take into account all the alternate flows. 

1. Specify the real use case, including its extensions. 
2. Specify the essential use case, again including its extensions. 
3. Determine the requests generated by the real use case.  
4. Document the mapping of the real use case to the requests using tex-

tual references. 
 

15.3 Visit a website that allows free on-line playing of Sudoku puzzles and 
consider the real use case corresponding to the solution of a new puzzle. 

1. Specify the use case, including its extensions. 
2. Determine the requests generated by the use case. 
3. Document the mapping of the use case to the requests using creation 

dependencies.  



16 Case Study 

In the preceding chapters, we studied the elements from which schemas 
are made up. We followed a bottom-up approach, starting with the basic 
elements of entity and relationship types, and then proceeding to more 
complex elements until we reached the state transition diagrams and state-
charts.  

However, schemas are not defined in this way. In most projects, concep-
tual modeling comprises two main kinds of activity: domain analysis and 
use case analysis. In domain analysis, we study and define the existing or 
designed domain concepts and their properties. In use case analysis, we 
elicit and define the knowledge the system has to know to carry out the 
functions required by the use cases. 

This chapter illustrates the activities of conceptual modeling by means 
of a case study. We define a fragment of the schema of a well-known real-
world information system. The system chosen is osCommerce (for “Open 
Source Commerce”), an e-commerce and online-store management soft-
ware program. It is available1 as free software under the GNU General 
Public License. osCommerce was started in March 2000 in Germany, and 
since then it has been adopted by thousands of stores around the world. 

In Sect. 16.1, we show the main concepts of the osCommerce domain, 
extracted from the (limited and sometimes imprecise) public documenta-
tion of the system.2 Sections 16.2 to 16.5 focus on a few key use cases in 
the four main areas of the system: configuration, administration, customers  
and the catalog area. The use cases and the required knowledge have been 
extracted from the documentation, experimentation (as a user) with the 
standard version of the system and an analysis of its relational database 
schema. The interested reader can find the complete up-to-date schema of 
the system on the companion website to the book. 

 
 

                                                      
1 www.oscommerce.com 
2 www.oscommerce.com/solutions/documentation 
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16.1 Main Domain Concepts 

Figure 16.1 shows the main concepts in the osCommerce domain. More 
details will be given later on.  

The products in the store are manufactured by manufacturers, are 
grouped into categories, and belong to tax classes.  

Products may have attributes. An attribute is an option/value pair, such 
as Size/Small, Size/Large, or Color/Yellow. The price of a product varies 
depending on the attributes it has.  

A customer has one or more addresses. Each address is located in a 
country. Moreover, if the country has zones (states or provinces), then the 
address must be located in a zone.  

A shopping cart contains one or more items (not shown in the figure), 
each of which is a quantity of a product with a set of attributes. When a 
customer confirms that he wants to buy the contents of his shopping cart, 
the system generates an order. An order contains one or more order lines, 
each of which is a quantity of a product with a set of attributes. 

In the following sections, we refine the above concepts and develop sev-
eral fragments of the structural and behavioral schemas of osCommerce. 

16.2 Store Configuration 

When osCommerce is installed, the system assigns initial values to a set of 
parameters. In most cases, these values must be changed. There are a few 
use cases that can be applied to make these changes. In what follows, we 
only describe two parts of the initial configuration of the system: the store 
data and the minimum values.  

16.2.1 Store Data 

Figure 16.2 shows the store data used by osCommerce. Store is a constant 
entity type that has only one instance, which is created and initialized on  
installation. We can ensure that there will be only one instance of Store 
with the constraint defined by the following class operation:3 
context Store::alwaysOneInstance():Boolean 
  body: Store.allInstances()->size() = 1

                                                      
3 For the sake of uniformity, we define all constraints and derivation rules by op-

erations in this chapter. 
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To change the initial values, the system administrator starts the use case 
Change store data:4 
 
Use case: Change store data 
Primary Actor: System administrator 
Trigger: The system administrator wants to change the initial values of the store 
data. 
Main Success Scenario: 
1. The system displays the current values of the store data. 
2. The system administrator provides a new value for one of the store attributes: 

[→ NameChange] 
[→ OwnerChange] 
[→ ZoneChange] 
[→ EMailAddressChange]  
[→ EMailFromChange] 

                                                      
4 In this chapter, we document the mapping of use cases to requests by means of 

textual references. If not indicated otherwise, the requests are domain event no-
tifications, which we name omitting the suffix Notification. 

Fig. 16.2. Fragment of the structural schema dealing with a store and its
localization
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[→ ExpectedSortOrderChange] 
[→ ExpectedSortFieldChange] 
[→ SendExtraOrderEMailChange] 
[→ DisplayCartAfterAddingProductChange] 
[→ AllowGuestToTellAFriendChange] 
[→ DefaultSearchOperatorChange] 
[→ AddressAndPhoneChange] 
[→ ShowCategoryCountsChange] 
[→ TaxDecimalPlacesChange] 
[→ DisplayPricesWithTaxChange]  

3. The system validates that the value is correct. 
4. The system saves the new value. 
5. The system displays the new values of the store data. 
The system administrator repeats steps 2–5 until he is done. 

We show only the definitions of the first and third domain events (Fig. 
16.3); the others are quite similar. Since these event types change attributes 
or associations of the store, it is practical to define the association with 
Store in a single place (StoreEvent). In this case, the association is derived. 
Given that Store has only one instance, the derivation rule is 
context StoreEvent::myStore():Store 
  body: Store.allInstances()->any(true) 

The event effects are 
context NameChange::effect() 
  post: myStore.name = self.newName 

context ZoneChange::effect() 
  post: myStore.zone = self.newZone 

Fig. 16.3. Definition of domain event types NameChange and ZoneChange
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16.2.2 Minimum Values 

osCommerce allows defining a minimum length to be defined for the 
string values of some attributes and allows one to specify that some attrib-
utes or associations are either mandatory or optional. Figure 16.4 shows a 
few of the minimum values. On installation, the system assumes some ini-
tial values, but they can be changed with the use case Assign minimum 
values: 
 
Use case: Assign minimum values 
Primary Actor: System administrator 
Trigger: The system administrator wants to change the minimum values of some 
attributes. 
Main Success Scenario: 
1. The system displays the current minimum values. 
2. The system administrator provides a new value for one of the minimum values: 

[→ FirstNameMinimumChange] 
[→ LastNameMinimumChange] 
[→ DateOfBirthOptionalChange]  
[→ PasswordMinimumChange] 
[→ CompanyNameMinimumChange] 
[→ StreetAddressMinimumChange] 
[→ PostCodeMinimumChange] 
[→ CityMinimumChange] 
[→ PhoneMinimumChange]  

3. The system validates that the value is correct. 
4. The system saves the new value. 

Fig. 16.4. Fragment of the structural schema dealing with the minimum values of 
some attributes

firstName:PositiveInteger
lastName:PositiveInteger
dateOfBirth:Boolean
password:PositiveInteger
companyName:Natural
streetAddress:Natural
postCode:PositiveInteger
city:Natural
phone:Natural

MinimumValues
«utility»

Fig. 16.4. Fragment of the structural schema dealing with the minimum values of 
some attributes

firstName:PositiveInteger
lastName:PositiveInteger
dateOfBirth:Boolean
password:PositiveInteger
companyName:Natural
streetAddress:Natural
postCode:PositiveInteger
city:Natural
phone:Natural

MinimumValues
«utility»



16.3 Store Administration      359 

5. The system displays the new current minimum values. 
The system administrator repeats steps 2–5 until he is done. 

We show only the definition of the first domain event (Fig. 16.5); the 
others are quite similar. The event effect is 
context FirstNameMinimumChange::effect() 
  post: MinimumValues.firstName = self.newMinimum 

16.3 Store Administration 

In osCommerce, the products in the store are manufactured by manufac-
turers and are grouped into categories. In the following, we study a few use 
cases that are used by the store administrator to define manufacturers, 
categories, and products.  

16.3.1 Manufacturers 

Figure 16.6 shows the schema fragment corresponding to manufacturers. 
osCommerce is a multilingual system able to deal with any number of lan-
guages. Languages can be added or deleted as desired by the store. In Fig. 
16.6, the association class ManufacturerInLanguage defines that a manu-
facturer may have a different URL in each language, and that the system 

Fig. 16.5. Definition of FirstNameMinimumChange domain event type
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records the number of times a URL in a language has been clicked and the 
last time that it was clicked.5  

There are five constraints related to the fragment shown in Fig. 16.6. 
The first three are that a Manufacturer is identified by its name, and that a 
Language is identified by its name and by its code. Using class operations, 
these constraints can be formally defined as follows: 
context Manufacturer::nameIsUnique():Boolean 
  body: Manufacturer.allInstances()->isUnique(name) 
context Language::nameIsUnique():Boolean 
  body: Language.allInstances()->isUnique(name) 
context Language::codeIsUnique():Boolean 
  body: Language.allInstances()->isUnique(code) 

osCommerce can only work properly if there is at least one language. 
We can define this constraint with the following class operation: 
context Language::atLeastOneLanguage():Boolean 
  body: Language.allInstances()->size() > 0 

The last constraint is the rule that each manufacturer must have a URL 
in each language. This can be defined with the operation 
context Manufacturer::aURLinEachLanguage():Boolean 
  body:  
    self.language->size() = Language.allInstances()->size() 

The attribute Manufacturer::added is constant and derived. Its deriva-
tion rule is 

                                                      
5 ManufacturerInLanguage is the partial reification of the two common partici-

pants in the three relationship types manufacturer–language–url, manufacturer–
language–urlClicked, and manufacturer–language–lastClick. 

Fig. 16.6. Fragment of the structural schema dealing with manufacturers
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context Manufacturer::added():DateTime 
body: Now() 

where Now() is assumed to be a system operation that gives the current 
time. 

In the following, we define the three main use cases related to manufac-
turers that can be started by the store administrator: Add/Edit/Delete a 
manufacturer: 
 
Use case: Add a manufacturer 
Primary Actor: Store administrator 
Trigger: The store administrator wants to add a manufacturer. 
Main Success Scenario: 
1. The store administrator provides the details of the new manufacturer: 

 [→ NewManufacturer]. 
2. The system validates that the data is correct. 
3. The system saves the new manufacturer. 
 
Use case: Edit a manufacturer 
Primary Actor: Store administrator 
Trigger: The store administrator wants to edit a manufacturer. 
Main Success Scenario: 
1. The store administrator selects the manufacturer to be edited. 
2. The store administrator provides the new details of the selected manufacturer: 

[→ EditManufacturer]. 
3. The system validates that the data is correct. 
4. The system saves the changes. 
 
Use case: Delete a manufacturer 
Primary Actor: Store administrator 
Trigger: The store administrator wants to delete a manufacturer. 
Main Success Scenario: 
1. The store administrator selects the manufacturer to be deleted. 
2. The system warns the store administrator of the number of products linked to 
the manufacturer to be deleted. 
3. The store administrator confirms that he wants to delete the manufacturer:  

[→ DeleteManufacturer]. 
4. The system deletes the manufacturer and, if requested, changes the status of the 
products manufactured by it to “out of stock”. 

Figure 16.7 shows the definition of the three domain event types. Exist-
ingManufacturerEvent groups the event types dealing with an existing 
manufacturer. ManufacturerURLEvent groups the event types that define 
or change the URLs of a manufacturer. Note that the cardinalities of the 
ternary association HasURL ensure that the characteristics of the instances 
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of NewManufacturer and EditManufacturer include the URL of the manu-
facturer in each existing language.  

The name of a new manufacturer must be different from that of any of 
the existing manufacturers. This is captured by the event constraint defined 
by the following operation:  
context NewManufacturer::nameDoesNotExist():Boolean 
  body: not Manufacturer.allInstances()-> 
              exists(name = self.name) 

Likewise, the new name of an existing manufacturer must be different 
from that of any of the other manufacturers. This is captured by the follow-
ing event constraint: 
context EditManufacturer::newNameDoesNotExist():Boolean 
  body:  
    newName <> self.manufacturer.name implies  
      not Manufacturer.allInstances()-> 
            exists(name = self.newName) 

Fig. 16.7. Definition of domain event types related to manufacturers
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The effect of a new-manufacturer event is6 
context NewManufacturer::effect() 
  post: 
    m.oclIsNew() and 
    m.oclIsTypeOf(Manufacturer) and 
    m.name = self.name and 
    m.imagePath = self.imagePath and 

  Language.allInstances()-> 
    forAll(l| 
      self.hasURL->select(language=l).url = 
      m.manufacturerInLanguage->select(language=l).url) 

The effect of an edit-manufacturer event is similar: 
context EditManufacturer::effect() 
  post: 
    manufacturer.name = self.name and 
    manufacturer.imagePath = self.imagePath and 

  Language.allInstances()-> 
    forAll(l| 
      self.hasURL->select(language=l).url = 
      manufacturer.manufacturerInLanguage-> 
        select(language=l).url) 

An instance of DeleteManufacturer deletes the corresponding manufac-
turer and, if deleteProds is true, it also changes the status of the products 
of the manufacturer to “out of stock” (see Fig. 16.10). Formally, 
context DeleteManufacturer::effect() 
  post deleteManufacturer: 
    not manufacturer@pre.oclIsKindOf(OclAny) 
  post changeProductsToOutOfStock: 
    deleteProds implies 
      manufacturer@pre.product@pre-> 
        forAll(status = ProductStatus::outOfStock) 

16.3.2 Categories 

Figure 16.8 shows the schema fragment corresponding to categories. An 
instance of the ternary association HasName represents the name of a cate-
gory in a language. The figure shows the three cardinalities of HasName 
that can be defined in UML; in this case, the other nine cardinalities are 
unconstrained.  

An interesting issue here is the identification of categories. None of the 
main identification methods studied in Chap. 5 can be used for identifying 
the instances of Category. In this case, however, they can be identified by 

                                                      
6 The navigation of n-ary associations assumes that they have been reified. In the 

example of Fig. 16.7, it is assumed that there exists an association class named 
HasURL. 
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means of the instances of HasName. In each language, each category has a 
unique name. Therefore, a category may be identified by a language and a 
string (a name). 

In osCommerce the categories are arranged hierarchically. This con-
straint can be expressed as follows: 
context Category::isAHierarchy():Boolean 
    body: not self.allParents->includes(self) 

where allParents() is a helper operation defined as 
context Category 
  def: allParents():Set(Category) = 
          self.parent->union(self.parent.allParents()) 

Categories in the same hierarchical level are displayed as indicated by their 
sort order. 

In the following, we define the main use cases related to categories that 
can be started by the store administrator: 

 
Use case: Add a product category 
Primary Actor: Store administrator 
Trigger: The store administrator wants to add a category. 
Main Success Scenario: 
1. The store administrator provides the details of the new product category, includ-

ing its parent category, if any:  
[→ NewCategory]. 

2. The system validates that the data is correct. 
3. The system saves the new category. 
 
Use case: Edit a product category 
Primary Actor: Store administrator 
Trigger: The store administrator wants to edit a category. 
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Main Success Scenario: 
1. The store administrator selects the category to be edited. 
2. The store administrator provides the new details of the selected category:  

[→ EditCategory]. 
3. The system validates that the data is correct. 
4. The system saves the changes. 
 
Use case: Move a product category 
Primary Actor: Store administrator 
Trigger: The store administrator wants to change the placement of a category in 
the category hierarchy. 
Main Success Scenario: 
1. The store administrator selects the category to be moved. 
2. The store administrator indicates the new parent category, if any:  

[→ MoveCategory]. 
3. The system validates that the data is correct. 
4. The system saves the new placement. 
 
Use case: Delete a product category 
Primary Actor: Store administrator 
Trigger: The store administrator wants to delete a category. 
Main Success Scenario: 
1. The store administrator selects the category to be deleted. 
2. The system warns the store administrator about the number of subcategories 
and products linked to the category to be deleted. 
3. The store administrator confirms that he wants to delete the category:  

[→ DeleteCategory]. 
4. The system deletes the category, its subcategories, and the products linked to it. 

The definitions of the domain event types NewCategory, EditCategory, 
MoveCategory, and DeleteCategory are similar to these of the correspond-
ing types for manufacturers. In what follows, we describe only the defini-
tion of NewCategory (see Fig. 16.9). 

The name of a new category in a given language must be different from 
that of any of the existing categories in that language. This is captured by 
the event constraint  
context NewCategory::namesDoNotExist():Boolean 

body:  
  Language.allInstances()->forAll(l| 
    l.hasName.name-> 
      excludes(self.hasNewName-> 
        select(language=l)->any(true).name)) 
       

The event effect is 
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context NewCategory::effect() 
  post: 
    c.oclIsNew() and 
    c.oclIsTypeOf(Category) and 
    c.imagePath = self.imagePath and 

  c.sortOrder = self.sortOrder and 
  c.parent = self.parent and 
  Language.allInstances()-> 
    forAll(l| 
      self.hasNewName->select(language=l).name = 
        c.hasName->select(language=l).name) 

16.3.3 Products 

Figure 16.10 shows the schema fragment corresponding to products. A 
product is identified by a name in a language. In each language, product 
names are unique. This can be captured by the constraint 
context Language::nameUnique():Boolean 
  body: self.productInLanguage->isUnique(name) 

Figure 16.11 shows the schema fragment corresponding to product at-
tributes. An option has a set of values. An attribute is an option/value pair, 
such as Size/Small or Color/Yellow. A product attribute is the reification of 
the relationship between a product and an attribute. For example, the op-
tion Size may have the values Large, Medium, and Small (i.e. there are 
three instances of Attribute), and the product FashionT-Shirt may exist in a  
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store with the sizes Large and Small (i.e. there are two instances of Pro-
ductAttibute, one between FashionT-Shirt and the attribute Size/Large, and 
the other between FashionT-Shirt and the attribute Size/Small). 

The identification of Option and Value is similar to that of Product and 
Category: in a given language, names are unique. The cardinalities of the 
association HasOptionName ensure that each option has a unique name in 
a language. Taken together with the rule that there is at least one language, 
this guarantees the identifiability of options. Similar considerations apply 
to values. 

The entity types Attribute and ProductAttribute are identifiable by 
means of a compound reference consisting of the two intrinsic relationship 
types of their reification. 

There are several use cases related to products. In what follows, we de-
scribe only the use case Add a product, which includes the use cases Add 
product option and Add product option value. 

 
Use case: Add a product  
Primary Actor: Store administrator 
Trigger: The store administrator wants to add a product to the store catalog. 
Main Success Scenario: 
1. The store administrator selects the product category. 
2. The store administrator provides the product data:  

[→ NewProduct].  
3. The system validates that the data is correct. 
4. The system saves the new product. 
5. The store administrator provides a product attribute:  

[→ NewProductAttribute]. 
6. The system validates that the product attribute is correct. 
7. The system saves the new product attribute. 
The store administrator repeats steps 5–7 until he is done. 
Extensions: 
5a. The product does not have product attributes: 
 5a1. The use case ends. 
5b. The product option is new: 
 5b1. Add product option. 
5c. The product option value is new: 
 5c1. Add product option value. 

 
Use case: Add product option   
Primary Actor: Store administrator 
Trigger: The store administrator wants to add a product option to the store cata-
log. 
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Main Success Scenario: 
1. The store administrator provides the product option data:  

[→ NewProductOption].  
2. The system validates that the data is correct. 
3. The system saves the new product option. 

 
Use case: Add product option value   
Primary Actor: Store administrator 
Trigger: The store administrator wants to add a value to a product option. 
Main Success Scenario: 
1. The store administrator selects the product option. 
2. The store administrator provides the product option value data:  

[→ NewProductOptionValue].  
3. The system validates that the data is correct. 
4. The system saves the new product option value. 
 

In the following we describe only the domain event type NewProductAt-
tribute (see Fig. 16.12). An instance of NewProductAttribute cannot add a 
product attribute that already exists. This event constraint can be repre-
sented by the constraint operation 
context NewProductAttribute::attributeDoesNoExist():Boolean 
  body:  

  not self.product.productAttribute-> 
        exists(attribute.value=self.value and  
          attribute.option = self.option) 

Moreover, the option/value pair of the new attribute must be valid. This is 
ensured by the event constraint 
context NewProductAttribute::optionValueIsValid():Boolean 
  body: self.option.value->includes(self.value) 

Fig. 16.12. Definition of the domain event type NewProductAttribute
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The effect of the event is 
context NewProductAttribute::effect() 
  post:  
    pa.oclIsNew() and 
    pa.oclIsTypeOf(ProductAttribute) and 
    pa.increment = self.increment and 
    pa.sign = self.sign and 
    pa.product = self.product and 

  pa.attribute.option = self.option and 
  pa.attribute.value = self.value 

16.4 Customers 

Figure 16.13 shows the fragment of the structural schema corresponding to 
customers and addresses. A customer has one or more addresses, one of 
which is the primary address. The primary address is the default shipping 
and delivery address for the orders placed in the store, and the basis for tax 
calculations. Note that Address is a data type. The first and last names in 
an address may be different from those of its customer. Each address is lo-
cated in a country. Moreover, if the country has zones, then the address 
must be located in a zone whose name is the same as the name of the state, 
and the country of the zone must be the same as the country of the address. 
This rule is captured by the constraint 
context Country::addressesHaveZoneIfNeeded():Boolean 
  body:  
    self.zone->notEmpty() implies self.address-> forAll 
      (a|a.state ->notEmpty() and a.state = a.zone.name and 
         self = a.zone.country) 

Customers are identified by their eMailAddress: 
context Customer::eMailIsUnique():Boolean 
  body: Customer.allInstances()->isUnique(eMailAddress) 

There are several use cases related to customers. In what follows, we 
describe only the use case Create customer; this is included in the use case 
Place order, which we shall discuss in the next section. 
 
Use case: Create customer 
Primary Actor: Customer 
Trigger: The customer wants to open an account in the store. 
Main Success Scenario: 
1. The customer provides the required customer data: 

[→ NewCustomer]. 
2. The system validates the customer data. 
3. The system saves the customer data. 
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Figure 16.14 shows the definition of NewCustomer. The instances of 
this domain event type must satisfy several constraints. The first constraint 
is similar to some others that we have seen before: there cannot exist a cus-
tomer with the same email address: 
context NewCustomer::eMailDoesNotExist():Boolean 
  body: not Customer.allInstances()-> 
              exists(eMailAddress = self.eMailAddress) 

The second constraint ensures that the password is the same as the pass-
word confirmation: 
context NewCustomer::passwordCorrect():Boolean 
  body: password = pwConfirmation 

The other constraints guarantee that the attributes of NewCustomer satisfy 
the minimum requirements stated by the system administrator; see Fig. 
16.4 again. These are the following: 
context NewCustomer::firstNameRight():Boolean 
  body: primary.firstName.size() >=  MinimumValues.firstName 
context NewCustomer::lastNameRight():Boolean 
  body: primary.lastName.size() >= MinimumValues.lastName 

Fig. 16.13. Fragment of the structural schema dealing with customers and
addresses
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context NewCustomer::dobRight():Boolean 
  body:  
    MinimumValues.dateOfBirth implies dateOfBirth->notEmpty()   
context NewCustomer::companyRight():Boolean 
  body:  
    MinimumValues.companyName > 0 implies 

    primary.company->notEmpty() and  
    primary.company.size()>= MinimumValues.companyName  

context NewCustomer::streetRight():Boolean 
  body:  
    MinimumValues.streetAddress > 0 implies 

    primary.street->notEmpty() and  
    primary.street.size()  >= MinimumValues.streetAddress  

context NewCustomer::postCodeRight():Boolean 
  body: primary.postCode.size()>= MinimumValues.postCode  
context NewCustomer::cityRight():Boolean 
  body:  

  MinimumValues.city > 0 implies 
    primary.city->notEmpty() and 
    primary.city.size() >= MinimumValues.city  

context NewCustomer::phoneRight():Boolean 
  body:  
    MinimumValues.phone > 0 implies 

    phone->notEmpty() and 
    phone.size() >= MinimumValues.phone  

The effect of an instance of NewCustomer is 
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context NewCustomer::effect() 
  post: 
    c.oclIsNew() and 
    c.oclIsTypeOf(Customer) and 

  c.gender = primary.gender and 
  c.firstName = primary.firstName and 
  c.lastName = primary.lastName and 
  c.dateOfBirth = dateOfBirth and 
  c.eMailAddress = eMailAddress and 
  c.phone = phone and 
  c.fax = fax and 
  c.newsletter = newsletter and 
  c.password = password and 
  c.numberLogons = 0 and 
  c.primary = primary and 
  c.address = Set{primary}  

16.5 Online Catalog 

The online catalog includes the use cases that may be started by the cus-
tomers of the store. In the following, we describe the most important use 
case (Place an order) and a query. 

16.5.1 Shopping Carts 

Figure 16.15 shows the fragment of the schema corresponding to shopping 
carts. A shopping cart is anonymous until the customer logs in: at this 
moment it becomes a customer shopping cart. If a customer leaves a ses-
sion with a nonempty shopping cart, then the cart will be automatically re-
stored in his next session. Anonymous shopping carts can exist only in the 
context of a session, and they are automatically removed when the session 
expires. If a customer shopping cart exists in the context of a session then 
its customer is the same as the customer of the session. This is captured by 
the constraint 
context CustomerShoppingCart::sameCustomer():Boolean 
  body: self.session.customer = self.customer 

A shopping cart contains a sequence of one or more items, each of 
which is a quantity of a product. If the product has attributes (Fig. 16.11), 
then the shopping-cart item specifies one attribute for each option that the 
product has. For example, if the product has one or more values for the op-
tion Size, then each shopping-cart item of that product specifies one and 
only one value for Size (for example, Small). These constraints can be rep-
resented by the following two operations:  
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context ShoppingCartItem::productHasTheAttributes():Boolean 
  body: product.attribute->includesAll(attribute) 

context ShoppingCartItem::onlyOneAttributePerOption():Boolean  
  body: self.attribute->isUnique(option) 

The creation and updating of a shopping cart are part of the use case 
Place an order, which we shall describe in the next section. However, we 
shall define here two main domain event types and one action request type, 
shown in Fig. 16.16. 

The domain event type RemoveProduct removes a shopping-cart item 
from its shopping cart. Its effect is 
context RemoveProduct::effect() 
  post: not shoppingCartItem@pre.oclIsKindOf(OclAny)  

This postcondition ensures that the removed shopping-cart item will not 
exist in the new state of the information base (i.e. after the execution of the 
effect operation). Moreover, if the shopping cart has only one item, the 
shopping cart will be removed as well (why?). 

The domain event type ChangeQuantity changes the quantity of a shop-
ping-cart item. Formally, its effect is 
context ChangeQuantity::effect() 
  post: shoppingCartItem.quantity = self.quantity 
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osCommerce allows customers to remove and/or change the quantity of 
several items in a single use case step. We could define this change as a 
single domain event type, but if we already have (or will need) Re-
moveProduct and ChangeQuantity then it is better to define that change as 
an action request type. This is what we have done in Fig. 16.16. 

An instance of UpdateShoppingCart creates several instances of Re-
moveProduct and ChangeQuantity, as specified by its LineChange. In the 
request, there must be a line change for each shopping-cart item. Formally, 
this is an event constraint defined as 
context UpdateShoppingCart::complete():Boolean 
  body: lineChange->size() =  
          shoppingCart.shoppingCartItem->size() 

The effect is 

DomainEvent

ActionRequest

Update
ShoppingCart

effect()

Remove
Product

effect()

Change
Quantity

quantity:
PositiveInteger

effect()

remove:Boolean
quantity:
PositiveInteger

«dataType»
LineChange

ShoppingCartSession

«create»

11

1..*

«create»

Shopping
CartItem

1 1

Fig. 16.16. Definition of the action request type UpdateShoppingCart and the 
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context UpdateShoppingCart::effect() 
  post:  

  lineChange->forAll 
    (lc|let cartItem:ShoppingCartItem =  
              shoppingCart.shoppingCartItem-> 
                at(lineChange->indexOf(lc)) 
        in 
          (lc.remove or lc.quantity <> cartItem.quantity) 
             implies   
               if lc.remove then 
                  rp.oclIsNew() and 
                  rp.oclIsTypeOf(RemoveProduct) and 
                  rp.shoppingCartItem = cartItem 
               else  
                  cq.oclIsNew() and 
                  cq.oclIsTypeOf(ChangeQuantity) and 
                  cq.shoppingCartItem = cartItem and 
                  cq.quantity = quantity 
               endif)) 

16.5.2 Orders 

When the customer confirms that he wants to buy the contents of his shop-
ping cart, the system generates an order. Figure 16.17 shows the schema 
fragment corresponding to orders.  

Orders are identified by their attribute id, which is assigned automati-
cally when the order is created. The derivation rule is 
context Order::id():PositiveInteger 
  body:  
    if Order.allInstances()->size() = 0 then 0 
    else  
      Order.allInstances()-> 
        sortedBy(id)->last().id + 1 

  endif 

Each order has a status. Initially the status is pending, but it may change 
later on. Each change is represented by an instance of OrderStatusChange. 
The derived attribute Order::status gives the current status of the order. 
The derivation rule is 
context Order::status():OrderStatus 
  body: orderStatusChange->sortedBy(added)->last() 

The primary address of an order is that of its customer when the order is 
created. This is captured by a creation-time derivation rule with the defin-
ing operation 
context Order::primary():Address 
  body: customer.primary 

The attributes eMailAddress and phone are defined similarly.  
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The derived attribute Order::total gives the total amount of an order. We 
shall ignore the shipping costs and taxes here. The derivation rule is then  
context Order::total():Money 
  body: orderLine->collect(finalPrice*quantity)->sum() 

The final price of an order line is the price of the product plus or minus 
the increments of its attributes. The derivation rule is 

Fig. 16.17. Fragment of the structural schema dealing with orders
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context OrderLine::finalPrice():Money 
   body:  
    if orderLineAttribute->isEmpty() then price 
    else 
      orderLineAttribute->collect 
        (if sign = Sign::plus then increment  
         else –increment  
         endif)->sum() + price 
    endif  

 Note that all attributes of OrderLine, OrderLineAttribute, and Order-
StatusChange, as well as most of Order, are constant.  

 There are a few use cases that deal with shopping carts and orders. We 
describe the most important of them, Place an order, below: 
 
Use case: Place an order 
Primary Actor: Customer 
Precondition: None. 
Trigger: The customer wants to place an order. 
Main Success Scenario: 
1. At any time before step 10 the customer logs in:  

[→LogIn].  
The system adds the contents of the anonymous shopping cart to the customer 
shopping cart. 
2. The system displays the contents of the shopping cart. 
3. The customer browses the product catalog. 
4. The customer selects a product to buy:  

[→AddProductToShoppingCart]. 
5. The system adds the product to the shopping cart. 
6. The system displays the contents of the shopping cart. 
7. The customer changes the contents of the shopping cart:  

[→UpdateShoppingCart]. 
8. The system updates the shopping cart. 
9. The system displays the contents of the updated shopping cart. 
The customer repeats steps 3, 4 and 7 as necessary to build his order. 
10. The customer checks out the order. 
11. The system shows the shipping address and the shipping methods available. 
12. The customer selects the preferred shipping method. 
13. The system shows the billing address and the payment methods available. 
14. The customer selects the preferred payment method. 
15. The system displays a summary of the order. 
16. The customer confirms the order:  

[→OrderConfirmation]. 
17. The system saves the order. 
Extensions: 
1a. The customer is new: 
 1a1. Create customer. 
16a. The customer wants to change the contents of the shopping cart: 
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 16a1. The customer changes the contents of the shopping cart:  
[→UpdateShoppingCart]. 

 16a2. The customer continues with the checkout procedure at step 11. 
11a, 16a. The customer wants to change the shipping address: 

 11a1. The system shows the known addresses of the customer. 
 11a2. The customer selects a different shipping address.  

11a3. The customer continues with the checkout procedure at step 11. 
13a, 16b. The customer wants to change the billing address: 

13a1. The system shows the known addresses of the customer. 
 13a2. The customer selects a different billing address.  

13a3. The customer continues with the checkout procedure at step 13.  
16c. The customer wants to change the shipping method: 

 16c1. The customer selects the new shipping method. 
16c2. The customer continues with the checkout procedure at step 13. 

16d. The customer wants to change the payment method: 
 16d1. The customer selects the new payment method. 

16d2. The customer continues with the checkout procedure at step 15. 
11a2a,16a2a. The customer wants to define a new shipping address: 
 11a2a1. The customer gives the new address: 

[→NewAddress]. 
 11a2a2. The system saves the new address. 
 11a2a3. The customer continues with the checkout procedure at step 11. 
13a2a,16b2a. The customer wants to define a new billing address: 
 13a2a1. The customer gives the new address: 

[→NewAddress]. 
 13a2a2. The system saves the new address. 
 13a2a3. The customer continues with the checkout procedure at step 13. 

 

Fig. 16.18. Definition of the domain event type OrderConfirmation
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 In this use case, the most important domain event is OrderConfirma-
tion, shown in Fig. 16.18. We omit here the shipping and payment meth-
ods. The intended effect is as follows: 
context OrderConfirmation::effect() 
  post theOrderIsCreated: 
    o.oclIsNew() and 
    o.oclIsTypeOf(Order) and 

  o.customer = shoppingCart@pre.customer@pre and 
  o.billing = billing and 
  o.delivery = delivery and 

    osc.oclIsNew() and 
    osc.oclIsTypeOf(OrderStatusChange) and 

   --The initial status of the order is pending 
    osc.status = OrderStatus::pending and 
    osc.comments = comments and 

  o.orderStatusChange = Set{osc} and 
  --There is an order line for each shopping cart item 
  shoppingCart@pre.shoppingCartItem@pre->forAll 
    (i|OrderLine.allInstances()->one 
       (ol|ol.order = o and 
          ol.product = i.product@pre and 
          ol.quantity = i.quantity@pre and 
          i.attribute@pre->forAll 
            (iAtt|OrderLineAttribute.allInstances()->one 
               (olAtt|olAtt.orderLine = ol and 
                  olAtt.attribute = iAtt)))) 

  post theShoppingCartIsRemoved: 
    not shoppingCart@pre.oclIsKindOf(OclAny)  
  post updateProductQuantities: 
    let productsBought:Set(Product) =  
          shoppingCart@pre.shoppingCartItem@pre.product@pre 
            ->asSet() 
    in productsBought->forAll(p|  

       let quantityBought:PositiveInteger = 
             shoppingCart@pre.shoppingCartItem@pre->select 
               (product = p).quantity->sum() 
       in p.quantityOnHand =  
            p.quantityOnHand@pre-quantityBought and 
          p.quantityOrdered = 
            p.quantityOrdered@pre + quantityBought) 

16.5.3 Show Previous Orders 

osCommerce includes many predefined queries that can be requested by 
users in several use case steps and as a standalone use case. As an exam-
ple, we describe here the query ShowPreviousOrders, shown in Fig. 16.19. 
The answer to an instance of ShowPreviousOrders is given in attribute an-
swer, whose type is the complex type: 
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Set(TupleType(date:Date, 
              id:Natural, 
              name:String, 
              country:String,  
              status:OrderStatus,  
              total:Money)) 

The answer is given by the effect operation 
 context ShowPreviousOrders::effect() 
  post: 

  answer =  
    customer.order->collect(o| 
      Tuple{date = o.purchased.date,  
            id = o.id,  
            name = o.delivery.firstName. 
                     concat(o.delivery.lastName), 
            country = o.delivery.country.name,  
            status = o.status,  
            total = o.total})->asSet() 

Fig. 16.19. Definition of the query ShowPreviousOrders
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17 Metamodeling 

One principle of conceptual modeling is that domain objects are instances 
of entity types. Entity types, however, can also be seen as objects, and so 
they are also instances of types known as meta entity types. This is the 
basis of metamodeling, which we discuss in this chapter. Metamodeling is 
very important in the field of information systems, particularly in 
conceptual modeling. 

This chapter begins with a discussion of meta entity types in Sect. 17.1. 
Powertypes have received special attention in conceptual modeling. This 
kind of meta entity type is described in Sect. 17.2. Section 17.3 shows that 
the participants in some relationships are not entities, but rather entity 
types. Section 17.4 discusses the concept of meta relationship types. 
Equipped with this battery of concepts, we then deal with metaschemas, 
the fundamental objects of metamodeling, in Sect. 17.5. Finally, Sect. 17.6 
shows how a UML metaschema can be extended using stereotypes. 

17.1 Meta Entity Types 

17.1.1 Definition 

In Chap. 2 we defined an entity type as “a concept whose instances at a 
given time are identifiable individual objects that are considered to exist in 
the domain at that time”. We also saw that classification consists in 
determining the entity types which an object is an instance of at a given 
time. A classification defines an InstanceOf relationship between an object 
and an entity type. 

Now the question is: can an entity type also be an entity? Or the inverse: 
can an entity also be an entity type? The answer to these questions is yes. 
An entity type defined in the schema of a system may also be an entity in 
the information base of the same system or of another system. 

For example, consider a system that supports an ornithologist’s research 
on the behavior and evolution of a few specific bee-eaters and turtledoves. 
Figure 17.1 shows a fragment of the schema and information base of that 
system. The figure uses a dashed arrow to represent an InstanceOf 
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relationship between an entity and a type. In the figure, Bee-eater and 
Turtledove are entity types, of which there are two and three instances, 
respectively. 

Now let us consider another system that records the bird species that 
exist in a certain range, including their characteristics, habitats, distribution 
and sounds. Figure 17.2 shows a fragment of the schema and information 
base of this system. The entity type BirdSpecies has four entities: Bee-
eater, Turtledove, RockPigeon, and Goshawk. Thus, Bee-eater and 
Turtledove are entity types in the system shown in Fig. 17.1, whereas they 
are entities in the system shown in Fig. 17.2. 

If needed, any entity type (that is, any concept) can be seen as an entity. 
This duality manifests itself clearly in the definition of a concept, 
especially in definitional theory. As we saw in Chap. 2, in definitional 
theory, a concept is a set of properties. If we view this set of properties as 
an object, then a concept may also be an object. 

We often view sets of things as single objects. For example, a team is 
defined as 

A group of people who play a game or sport together against another group.1 

Therefore, just as a team, which is a set of people, is viewed as an object, a 
concept, which is a set of properties, may be viewed as an object. 

However, an entity cannot generally be seen as an entity type. For 
example, the soccer team called Barcelona is not a set of properties, and it 
cannot therefore be seen as an entity type (matches are played by teams, 
not by sets of properties). To be an entity type, namely a concept, an entity 
must be a set of properties that can be observed in the objects in the 
domain.  

A meta entity type is an entity type whose instances are entity types. The 
instances of a meta entity type are both entities and entity types. In the 

                                                      
1 Longman Dictionary of Contemporary English Online. 

TurtledoveBee-eater

Be1 Be2 Td1 Td3Td2

Fig. 17.1. Fragment of the schema and information base of a system that
records bee-eaters and turtledoves

TurtledoveTurtledoveBee-eaterBee-eater

Be1Be1 Be2Be2 Td1Td1 Td3Td3Td2Td2

Fig. 17.1. Fragment of the schema and information base of a system that
records bee-eaters and turtledoves
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system shown in Fig. 17.2, BirdSpecies is a meta entity type because its 
instances are also entity types. A given entity type may be an instance of 
several meta entity types. 

Biology provides many examples of meta entity types, but they can be 
found anywhere. Many organizations use the meta entity type 
EmployeeType, which has instances such as Engineer, Clerk, Salesperson 
and Manager. At home we use the entity type ApplianceType, which has 
instances such as Refrigerator, Dishwasher, and CDPlayer. Banks have 
AccountType, instances of which are SavingsAccount and 
CheckingAccount. In conceptual modeling, we use DataType, which has 
instances such as String, Decimal, Integer, Float, and Boolean. 

17.1.2 Classification Level 

The InstanceOf relationship defines a hierarchy between entities, entity 
types, meta entity types, etc. From this hierarchy we can determine the 
classification level, which is defined as follows. The classification level of 
an entity or entity type is a natural number that indicates its level in the 
hierarchy of InstanceOf relationships. By definition, the classification level 
of entities that are not entity types is 0. In the example shown in Fig. 17.1, 
the classification level of Be1, Be2, Td1, Td2 and Td3 is 0. These are specific 
birds that do not correspond to entity types (entity types do not fly, 
whereas birds do). None of the entities shown in Fig. 17.2 has a level of 0. 

 The classification level of entity types whose instances are not entity 
types is 1. In Fig. 17.1, the classification level of Bee-eater and Turtledove 
is 1. In Fig. 17.2, the classification level of Bee-eater, Goshawk, 
RockPigeon and Turtledove is also 1. The characteristic shared by these 
entity types is that their instances are specific birds and not entity types. 
The instances of level-1 entity types must be level-0 entities. The entity 
type called Entity also has a level of 1, because its instances are all of the 

TurtledoveBee-eater

BirdSpecies

Fig. 17.2. Fragment of the schema and information base of a system that
records bird species

GoshawkRockPigeonTurtledoveTurtledoveBee-eaterBee-eater

BirdSpeciesBirdSpecies

Fig. 17.2. Fragment of the schema and information base of a system that
records bird species

GoshawkGoshawkRockPigeonRockPigeon
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entities in an information base. All level-1 entity types are direct or 
indirect subtypes of Entity. 

The classification level of meta entity types whose instances are not 
meta entity types is 2. In Fig. 17.2, the level of BirdSpecies is 2. There are 
no examples in Fig. 17.1. The instances of level-2 meta entity types must 
be level-1 entity types. By analogy with the entity type Entity, we also 
define a special level-2 meta entity type called EntityType, whose instances 
are all level-1 entity types. Therefore, 

Entity InstanceOf EntityType 
BirdSpecies IsA EntityType 

In the general case, we may have meta entity types that are also entities 
and thus instances of a meta meta entity type, whose classification level 
will be 3. The instances of level-3 meta meta entity types must be level-2 
meta entity types. By analogy with the previous cases, we also define a 

Fig. 17.3. InstanceOf relationships between special entity types. The 
classification levels are shown on the left
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special level-3 meta meta entity type called MetaEntityType, whose 
instances are all level-2 meta entity types. Therefore, 

EntityType InstanceOf MetaEntityType 
BirdSpecies InstanceOf MetaEntityType 

The number of classification levels may increase indefinitely, and so it 
is convenient to assume that the hierarchy ends at some point. We 
therefore define a special entity type, called Individual, whose instances 
are all entities, entity types, meta entity types, meta meta entity types, etc., 
including itself. The concept of classification levels does not apply to 
Individual. 

Sometimes it is useful to have an entity type akin to Individual that does 
not include level-0 entities. We call this entity type Type because its 
instances, including itself, are entity types. The concept of classification 
levels does not apply to Type.  

We can define other types akin to Individual and Type. These types are 
called ω-types. Their common characteristic is that their instances have 
several classification levels. Figure 17.3 shows the above special entity 
types and their InstanceOf relationships. The figure also includes two 
specific entities (Ent1 and Ent2) to show that they are InstanceOf 
Individual, but not InstanceOf Type. 

17.1.3 InstanceOf versus IsA 

It is easy to confuse InstanceOf and IsA relationships, because many 
natural languages use the same expression to denote them. For example, in 
English we say “3 is an integer” and “an integer is a rational number”. In 
both cases, we use the expression “is a” despite the fact that in the former 
case we mean 

 3 InstanceOf Integer 

while in the latter case we mean 

 Integer IsA Rational 

The confusion is even greater in metamodeling, as the entities related by 
InstanceOf and IsA are entity types, meta entity types, meta meta entity 
types, and so on. In these cases, we need criteria to determine which 
relationship is appropriate. 

One such criterion is that IsA is transitive, whereas InstanceOf is not. 
Thus, if we have 

 Integer IsA Rational 
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 Rational IsA Number 

we easily infer that 

 Integer IsA Number 

However, when we have 

 3 InstanceOf Integer 
 Integer InstanceOf EntityType 

we cannot infer that 

 3 InstanceOf EntityType 

Another criterion is that in an E1 IsA E2 relationship, both E1 and E2 
must have the same classification level, which must be greater than 0. 
However, in E1 InstanceOf E2, the classification level of E1 must be one 
less than that of E2, unless E2 is an ω-type. By applying this criterion, we 
see that 

 Integer InstanceOf Rational 

is invalid because their classification level is 1. Nor can we say that 

 3 IsA Integer 

because the classification level of 3 is 0, while that of Integer is 1. 
Let us now analyze the interaction between InstanceOf and IsA. We 

distinguish four cases: 

• From C InstanceOf A and A IsA B, we can infer C InstanceOf B. This is 
a well-known property, by which C is an indirect instance of B. 

• From C InstanceOf B and A IsA B, we cannot infer anything new. C may 
or may not also be an instance of A. 

• From A IsA B and B InstanceOf C, we cannot infer anything new. A may 
or may not be an instance of C. For example, from 

 YoungBee-eater IsA Bee-eater 
 Bee-eater InstanceOf BirdSpecies 

we cannot infer that YoungBee-eater InstanceOf BirdSpecies.  
• From A IsA B and A InstanceOf C, we cannot infer B InstanceOf C. For 

example, from 

 YoungBee-eater IsA Bee-eater 
 YoungBee-eater InstanceOf YoungBirdType 

we cannot infer that Bee-eater InstanceOf YoungBirdType. 
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As an additional example, consider the domain of figures and assume 
the following entities and entity types (see Fig. 17.4): 

• the entity Figure17.3, shown in the previous subsection; 
• the entity type FigureWithRectangles, whose instances are all figures 

that contain at least one rectangle; 
• the entity type Figure, whose instances are all possible figures; 
• the meta entity type DrawingType, whose instances are Figure, Sketch, 

etc. 

The InstanceOf and IsA relationships here are 

 Figure17.3 InstanceOf FigureWithRectangles 
 FigureWithRectangles IsA Figure 
 Figure InstanceOf DrawingType 
 FigureWithRectangles InstanceOf DrawingType 
 Sketch InstanceOf DrawingType 

from which we can infer only that 

 Figure17.3 InstanceOf Figure 

17.1.4 Monolevel and Multilevel Information Bases 

In Chap. 2, we saw that an information base contains a symbol for each 
object represented in the system, as well as the classification of these 
objects into the entity types defined in the schema. If, in a given domain, 
we have the classification A InstanceOf B, then: 

Fig. 17.4. Examples of InstanceOf and IsA.
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• A will be represented by a symbol in the information base. 
• B will be represented by a symbol in the schema. 
• The information base will represent the classification of A as an object 

of type B. 

An information base is multilevel if it can contain one or more 
sequences of classifications of the form 

 A InstanceOf B 
 B InstanceOf C 

A multilevel information base may contain a classification of an entity 
as an object of type B and a classification of B as an object of another type 
C. An information base is monolevel if, when it contains the classification 
A InstanceOf B, it cannot contain a classification of B as belonging to 
another type C. The classifications into the special entity types shown in 
Fig. 17.3 are implicitly present in all information bases, and they are not 
taken into account in determining whether an information base is 
monolevel or multilevel. 

Most information bases are monolevel. The information base shown in 
Fig. 17.1 is monolevel: each of the five entities that it contains is a direct 
InstanceOf one of the two entity types defined in the schema. The 
information base shown in Fig. 17.2 is also monolevel: each of the four 
entities is a direct InstanceOf BirdSpecies, which is defined in the schema. 

Usually, all of the entities represented in a monolevel information base 
have the same classification level. In Fig. 17.1, this level is 0. In Fig. 17.2, 
it is 1. However, as explained below, the entities of a monolevel 
information base may have different classification levels. 

TurtledoveBee-eater

Be1 Be2 Td1 Td3Td2

RockPigeon

BirdSpecies

Goshawk

Fig. 17.5. Integration of the schemas and information bases of Figs. 17.1 and 17.2 
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Fig. 17.5. Integration of the schemas and information bases of Figs. 17.1 and 17.2 



17.1 Meta Entity Types      391 

If we integrate the systems shown in Figs. 17.1 and 17.2, we obtain the 
system shown in Fig. 17.5, whose information base is multilevel. It 
contains the following classifications, among others: 

 Be1 InstanceOf Bee-eater 
 Bee-eater InstanceOf BirdSpecies 

In multilevel information bases, there are entity types that appear in both 
the information base and the schema, as in the case of the entity types Bee-
eater and Turtledove in Fig. 17.5, for instance. This means that the clear 
distinction between the information base and the schema that exists in the 
case of monolevel information bases is blurred for multilevel ones. If so 
desired, the problem can be avoided by ignoring the distinction between 
the information base and the schema and dealing only with knowledge 
bases, which include both. We tend to keep the distinction, however, 
because it is very common in the information systems field.  

17.1.5 Logical Representation 

Chapter 2 discussed the logical representation of A InstanceOf E 
classifications in monolevel information bases. In essence, the information 
base contains a symbol denoting A, the schema contains a symbol denoting 
E and the information base contains the formula E(A), which means that A 
is an instance of E. 

If we use this logical representation with the system shown in Fig. 17.2, 
the schema will contain the predicate BirdSpecies and the information base 
will contain the following formulas: 

 BirdSpecies(Bee-eater) 
 BirdSpecies(Turtledove) 
 BirdSpecies(RockPigeon) 
 BirdSpecies(Goshawk) 

This form of representation ignores the fact that Bee-eater, etc., are entity 
types, because it is irrelevant to this system. 

This logical representation cannot be used for multilevel information 
bases (at least in first-order logic), because we cannot represent the 
classifications shown in Fig. 17.5 as 

 Bee-eater(Be1) 
 BirdSpecies(Bee-eater) 

because then the symbol Bee-eater would be both a predicate and a term, 
which is not permissible in first-order logic. 
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In first-order logic, the solution is to represent all classifications using a 
single binary predicate, which we shall call In. Thus, 

 In(A,B) 

means A InstanceOf B. Using this predicate, the classifications shown in 
Fig. 17.5 are represented by the following formulas: 

 In(Bee-eater,BirdSpecies) 
 In(Turtledove,BirdSpecies) 
 In(RockPigeon,BirdSpecies) 
 In(Goshawk,BirdSpecies) 
 In(Bei,Bee-eater) 
 In(Toi,TurtleDove) 

The main drawback of this form of representation is that entity types do 
not have an associated predicate. If we need them, they must be defined as 
derived. For example, if we need a predicate that corresponds to the entity 
type Bee-eater, we must define a new derived predicate such as P_Bee-
eater using the derivation rule 

P_Bee-eater(e) ↔ In(e,Bee-eater)  

where Bee-eater is a constant that denotes the entity type called Bee-eater. 
When classifications are expressed with the In predicate, the logical 

representation of an A IsA B relationship is the following formula: 

In(e,A) → In(e,B) 

Fig. 17.6. UML representation of the entities, entity types, and meta entity
type shown in Fig. 17.5
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17.1.6 Representation in UML 

UML does not allow a uniform, coherent representation of types, meta 
entity types, etc., in multilevel information bases. UML is essentially 
geared towards monolevel information bases, but it does include constructs 
that provide some expressiveness, as explained below. 

In UML, it is easy to represent the classification of an entity into one or 
more entity types. The graphical notation is a rectangle containing the 
name of the entity, a colon, and the names of the entity types, all 
underlined. At the bottom of Fig. 17.6, this notation is used to represent the 
two bee-eaters and three turtledoves shown in Fig. 17.1.  

A meta entity type can be represented as an entity type using the 
stereotype metaclass. The instances of entity types in this stereotype are 
entity types. Figure 17.6 shows an example: the instances of BirdSpecies 
are entity types.  

To show the classification of an entity type into a meta entity type, we 
can use the same notation as for the classification of an entity in an entity 
type. Figure 17.6 uses this notation to indicate that Bee-eater, Turtledove, 
RockPigeon, and Goshawk are instances of BirdSpecies. However, this 
kind of classification is not usually shown in UML. 

17.2 Powertypes 

Powertypes are a particular kind of meta entity type; they occur frequently 
and receive special attention in conceptual modeling. UML provides a 
special notation for them. A powertype P of an entity type E is a meta 
entity type whose instances are subtypes of E. Normally, P is a level-2 
meta entity type and its instances are level-1 entity types. The entity type E 
is not an instance of P. 

For example, the meta entity type BirdSpecies described in the previous 
section is a powertype of Bird. The instances of BirdSpecies (Bee-eater, 
etc.) are subtypes of Bird.  

In logic, the representation of a powertype P of E consists of a formula 
for each instance Ei of P. The formula is as follows: 

In(Ei,P) →∀e (In(e,Ei) → In(e,E)) 

That is, if Ei is an instance of P, then each instance of Ei must also be an 
instance of E. 

In UML, a powertype P of E is represented as an ordinary entity type. 
Each entity type that is an instance of P must have an IsA relationship 
(arrow) with E. To indicate instances of P, the string “: P” is placed next to 
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the set of IsA arrows from those instances to E. Figure 17.7 shows an 
example of this.  

Another example of a powertype is ApplianceType, whose instances 
(such as WashingMachine, Fridge, and Stove) are subtypes of Appliance. 
Figure 17.8 shows its representation in UML. The association appliance–
applianceType could be defined as derived because an appliance’s type is 
the subtype of which it is an instance. If, for example, an appliance is a 
fridge, then the appliance must be associated with the instance of 
ApplianceType that corresponds to Fridge. 

Powertypes may have attributes and participate in associations. The next 
section shows that these attributes and associations have a particular set of 
characteristics. In Fig. 17.8, ApplianceType has the attribute averagePrice 
and participates in the following relationship type:  

Produces (Company, ApplianceType) 

which indicates the types of appliances produced by a company. Note how 
this differs from 

 ProducedBy (Appliance, Company) 

which indicates the company that manufactured a particular appliance. 

17.3 Class Relationship Types 

We know that an information base contains a representation of the entities 
that exist in a domain and their relationships. We have just seen that an 
entity type may be an entity. This leads us to the question of whether there 
may be relationships between entity types. 

The answer is yes. There are relationships in which all or some of the 
participants are entity types. In other words, there are relationships in 
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which all or some of the participants have a classification level greater 
than 0. These relationships, like any other, must be instances of a 
relationship type called a class relationship type. The instances of a class 
relationship type are relationships in which some of the participants are 
entity types. Apart from this, class relationship types are the same as 
ordinary relationship types, and their logical representation is identical. 

Let us suppose that we are interested in the average length of each 
species of bird. The relationship type would be 

 AverageLength (BirdSpecies, Length) 

which is a class relationship type because its instances include 
relationships such as 

 AverageLength (Bee-eater, Length28cms) 
 AverageLength (TurtleDove, Length30cms) 

in which the first participant is an entity type. The second participant is a 
specific length, which is a characteristic not of a particular bird, but of the 
whole species. 

Most class relationship types are binary and their instances relate a 
level-1 entity to a level-0 entity. As shown above, this is the case for 
AverageLength. However, all cases are possible. An example in which 
both participants have a level of 1 is 

 IsLarger (large:BirdSpecies, small:BirdSpecies) 

in which the relationship is between two bird species. An instance might 
be 
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 IsLarger (TurtleDove, Bee-eater) 

which represents the fact that turtledoves are typically larger than bee-
eaters. 

UML does not allow a coherent representation of class relationship 
types, but it does include a construct that provides limited expressiveness, 
as explained below. 

In UML, attributes may be static or nonstatic. Let A(E1,E2) be an 
attribute. Attribute A is nonstatic (which is the default) if each instance of 
E1 has a value for the attribute. It is static if the attribute has a value that 
applies to the entity type E1. In both cases, the value of the attribute is an 
instance of E2. In graphical representations, static attributes are underlined.  

Figure 17.9 (left) shows four examples of static attributes. The entity 
type is Account, and the four attributes are 

• minimumBalance: Money. Indicates the minimum balance that must be 
maintained by all accounts. 

• interestRate: Percentage. Gives the interest rate earned by accounts. All 
accounts earn the same interest rate.  

• numberOfAccounts: Natural. Indicates the total number of existing 
instances of Account. This is a derived attribute. 

• totalBalance: Money. Gives the sum of the balances of all existing 
accounts. This is also a derived attribute. 

Sometimes it is useful to group a set of static attributes into a single en-
tity type. UML provides a stereotype for this purpose, called utility. An en-
tity type with the stereotype utility has no instances and can have only 
static attributes (and operations). Figure 17.9 (right) shows an example. 

The attributes of powertypes and the associations in which they partici-
pate are class relationship types. Figure 17.8 shows three examples: the at-
tribute averagePrice, the association appliance–applianceType and the as-
sociation Produces. 

Fig. 17.9. Examples of static attributes
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17.4 Meta Relationship Types 

17.4.1 Definition 

Meta relationship types have not yet been studied enough, and 
unfortunately there does not exist a commonly accepted definition of them. 
By analogy with meta entity types, a meta relationship type should be a 
relationship type whose instances are both relationships and relationship 
types. This definition, however, is not widely accepted. In fact, most of the 
literature on metamodeling implicitly assumes otherwise. 

If a meta entity type is something whose instances are entity types, then 
a consistent use of language requires that a meta relationship type be 
something whose instances are relationship types. 

However, entity and relationship types are concepts, and definitional 
theory states that concepts are sets of properties. An entity type is a set of 
properties that specific objects must satisfy in order to be instances of that 
type. A relationship type is a set of properties that specific relationships 
must satisfy in order to be instances of that type. 

If both entity and relationship types are concepts and the former are 
considered as instances of entity types, then the latter should also be 
considered as instances of entity types. This leads us to the most widely 
accepted definition: a meta relationship type is an entity type whose 
instances are both relationship types and entities. 

We shall consider an example schema in which relationship types are 
instances of entity types. We shall then explain a problem that would arise 
if meta relationship types were relationship types. 

Cyc is one of the largest ontologies currently in existence. What we call 
a relationship type is a function or a predicate in Cyc. Functions and 
predicates are direct instances of one or more meta entity types. In Cyc, 
these meta entity types are neither functions nor predicates; they are what 
we call entity types. 

For example, consider the ternary relationship type 

HasPositionIn (Person, Organization, PositionType) 

which indicates that a person works in an organization in a certain type of 
position, and the five-degree relationship 

AmountOfSalesByToDuring  
(seller:Agent, buyer:Agent, TimeInterval, ProductType,  
revenue:Money) 

which indicates how much of a certain product was sold by a particular 
seller to a particular buyer during a particular time interval.  
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In Cyc, these two predicates are defined as an instance of 
#$FunctionalPredicate, which is not a predicate, but rather an entity type. 
The instances of #$FunctionalPredicate are predicates that are functional 
in at least one argument (in HasPositionIn, a person can have only one 
position in an organization; in AmountOfSalesByToDuring, there can be 
only one amount of revenue for a given seller, buyer, time interval, and 
product type). More examples are presented below. 

Let us see what would happen if meta relationship types were 
relationship types. Consider the following meta relationship type: 

 BinaryRelationshipType   
(participant1:EntityType, participant2:EntityType) 

whose instances are all binary relationship types. However, in conceptual 
modeling, no two instances of the same relationship type can have the 
same participants. Therefore, we could not have the relationship types 

Lives (Person, Town) 
 Works (Person, Town) 

as two instances of BinaryRelationshipType, because they have the same 
participants (Person, Town). One solution would be to give 
BinaryRelationshipType a third participant with the name of the 
relationship type (Lives, Works). However, the instances of a ternary 
relationship type would then be binary relationship types, and similar 
problems would appear.  

For this reason, BinaryRelationshipType is usually defined as an entity 
type whose instances are relationship types with two participants. 

Class relationship types, which have been described above, are 
sometimes confused with meta relationship types. However, the difference 
is clear: the instances of a class relationship type are not relationship types 
(concepts), but rather relationships.  

17.4.2 Logical Representation 

Chapter 3 discussed the logical representation of the instances of a 
relationship type in a monolevel information base. In essence, an instance 
of a relationship type R of degree n is represented by a formula R(A1, …, 
An), where R is the predicate of the relationship type, which is defined in 
the schema, and A1, …, An are the symbols that denote the participating 
entities.  

In multilevel information bases, we cannot represent R as an instance of 
a meta relationship type MR with a formula such as 
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MR(R) 

because R would be both a predicate and a term. This is the same problem 
that we encountered when we attempted to classify entity types as meta 
entity types. 

One solution is to represent all binary relationship types using a single 
ternary predicate, which we shall call InBinaryRT. Thus, 

 InBinaryRT(A,B,R) 

means that entities A and B are the participants in an instance of R. To 
represent R as an instance of MR, we would write 

In(R,MR) 

where In is the predicate defined in Sect. 17.1.5. 
We would do the same for ternary relationship types, using a predicate 

such as InTernaryRT, and for any other degrees required. 
The main drawback of this form of representation is that relationship 

types do not have associated predicates. If we need them, they must be 
defined as derived. For example, if we need a predicate that corresponds to 
the relationship type LivesIn, we must define a new derived predicate such 
as P_LivesIn using the following derivation rule: 

P_LivesIn(person,town) ↔ InBinaryRT(person,town,LivesIn)  

where LivesIn is a constant that denotes a relationship type called 
“LivesIn.” 

When relationship classifications are expressed using the InBinaryRT 
predicate, the logical representation of the specialization R IsA S, where 
both R and S are binary relationship types, is the following formula: 

InBinaryRT(a,b,R) → InBinaryRT(a,b,S) 

17.4.3 Representation in UML 

UML is not well suited to representing meta relationship types and their 
instances in multilevel information bases. The only way to do so is by 
using stereotypes, as explained later on in this chapter. However, 
stereotypes provide only limited expressiveness.  
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17.5 Metaschemas 

17.5.1 Definition 

We know that a conceptual schema is a representation of general 
knowledge about a domain. Domains are normally organizations or parts 
of them, but they may also take many other forms. In particular, a domain 
may be the conceptual schema of an information system. A metaschema is 
a schema that represents general knowledge about a domain that consists 
of a schema. 

Figure 17.10 shows the difference between a schema and a metaschema 
and introduces some related concepts. The figure shows an information 

Fig. 17.10. Relationships between a meta information system and an information
system
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system IS that consists of three components: an information processor IP, a 
conceptual schema S and an information base IB. The information base IB 
contains a representation of the state of the domain; that is, IB contains a 
representation of all the entities in the domain and their relationships. The 
schema S contains a representation of the general knowledge about the 
domain (entity types, relationship types, constraints, domain events, etc.). 
The processor IP receives external messages and changes IB and/or 
produces an output. 

Let us assume that we have another information system MIS that, among 
other functions, maintains a representation of the schema S. The right-hand 
side of Fig. 17.10 shows the three components of MIS: 

• The information base MIB contains a representation of S. 
• The conceptual schema MS contains a representation of the general 

knowledge about the domain that consists of S. The schema MS is the 
metaschema of S. Also, S is an instance of MS. 

• The processor MIP receives external messages and changes MIB and/or 
produces an output. 

Figure 17.10 also shows a relationship between the domain and IB. This 
is a representation or denotation relationship, which indicates that the 
instances and relationships in the domain are represented by symbols in IB. 
By virtue of this relationship, the domain corresponds to IB.  

Similarly, there is a representation or denotation relationship between S 
and MIB, which indicates that the instances and relationships in S are 
represented by symbols in MIB. By virtue of this relationship, S 
corresponds to MIB. 

The schemas S and MS may be written in the same conceptual model 
and language or in different ones. For example, S may be represented 
graphically in the ER model, MS may be represented in the FOL model 
and language, or S and MS may both be written in UML. 

17.5.2 Example of a Metaschema 

In order to illustrate the meaning of the concepts shown in Fig. 17.10, let 
us analyze a specific example of a metaschema MS. Figure 17.11 shows 
the entity and relationship types of a metaschema fragment in UML. 

The entity types in MS are: 

• EntityType. This is a level-2 meta entity type whose instances are the 
entity types of a schema S. Each instance of EntityType has a value for 
the attribute name, which is the name of the corresponding entity type. 
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• RelationshipType. This is a level-2 entity type whose instances are the 
relationship types of a schema S. Each instance of RelationshipType has 
a value for the attribute name, which is the name of the corresponding 
relationship type. 

• Participant. This is a level-1 entity type; therefore, its instances are not 
concepts. The instances of Participant define the roles and entity types 
of the participants in a relationship type. The attributes roleName and 
multiplicity give the name of the role and its multiplicity, respectively. 

• Generalization. This is described below. 

Normally, a metaschema MS is much smaller than its schema instances 
S. In a schema S, there are many instances of the entity types shown in Fig. 
17.11. 

Figure 17.12 shows a relationship type (LivesIn) in the schema S and its 
representation in the meta information base MIB as a UML object diagram. 
There is a correspondence between LivesIn and the single instance of Rela-
tionshipType. Because LivesIn is binary, there are two instances of Par-
ticipant in the MIB (p1 and p2). 

The correspondence rules between S and MIB are the following: 

• There is a 1–1 correspondence between the entity types in S and the 
instances of EntityType in MIB. The name of an entity type in S is the 
value of the attribute name in MIB. 
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• There is a 1–1 correspondence between the relationship types in S and 
the instances of RelationshipType in MIB. The name of a relationship 
type in S is the value of the attribute name in MIB. The relationship type 
in S has a participant for each instance of Participant in the 
corresponding RelationshipType in MIB. The name of this participant is 
the value of the attribute roleName of Participant. The multiplicity of 
this participant is the value of the attribute multiplicity of the participant. 
The participant entity type is given by the association ParticipatesIn. 

Naturally, the metaschema MS must include the integrity constraints that 
its instances must satisfy (in MIB). These constraints are sometimes called 
meta integrity constraints, although this may cause confusion because 
these constraints are not concepts and do not have instances. Nevertheless, 
this is an acceptable name because these constraints are defined in 
metaschemas. These constraints are also sometimes called well-formedness 
rules. A well-formedness rule is a term used in the normative UML 
metamodel specification to describe a set of constraints written in OCL 
that helps to define a metamodel element. 

Figure 17.11 defines graphically the referential and cardinality 
constraints of MS. The additional constraints are (in OCL) 
context EntityType inv nameIsUnique: 

EntityType.allInstances()->isUnique(name) 
context RelationshipType inv nameIsUnique: 

RelationshipType.allInstances()->isUnique(name) 

Fig. 17.12. Example of a relationship type (LivesIn) in the schema S and its
representation in the information base MIB
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context RelationshipType inv rolesHaveDifferentName: 
participant->isUnique(roleName) 

The metaschema example shown in Fig. 17.11 illustrates again that meta 
relationship types are entity types. In this figure, the entity type 
RelationshipType is a meta relationship type because its instances are 
relationship types in S. 

Figure 17.13 shows a generalization (Person Gens Man, Woman) in the 
schema S and its representation in the information base MIB through an 
object diagram. The two instances of Generalization correspond to the IsA 
of schema S. The correspondence is simple: if in S there is a B IsA C, then 
in MIB there is an instance of Generalization, g, such that 

• g.subtype = the instance of EntityType with name = “B”  
• g.supertype = the instance of EntityType with name = “C” 

The most important constraint related to Generalization is that an 
EntityType cannot be a direct or indirect generalization of itself. Formally,  
context EntityType inv noCycles: 

not self.allParents()->includes(self) 

where allParents() is a helper operation defined as 
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context EntityType: 
def allParents():Set(EntityType) =  
  self.generalization.parent-> 
    union(self.generalization.parent.allParents())->asSet()   

17.5.3 Levels of a Meta Information Base 

The first section of this chapter explained that information bases may be 
monolevel or multilevel. Let us now determine what kind of meta 
information base is shown in Fig. 17.12, assuming that its metaschema is 
the one shown in Fig. 17.11. 

MIB is monolevel. It contains classifications of level-1 entity types into 
level-2 entity types (such as Person InstanceOf EntityType) and 
classifications of level-0 entities into level-1 entity types (such as p1 
InstanceOf Participant), but no entity type is classified as an instance of 
another entity type. 

MIB also contains several instances of ordinary relationship types. For 
example, Figure 17.12 shows the value of the attribute roleName of 
Participant p1. 

MIB contains several instances of class relationship types. One is 

 ParticipatesIn (EntityType, Participant) 

The instances of this type have a level-1 participant (an entity type, such as 
Town in Fig. 17.12). 

17.5.4 The Importance of Metaschemas 

Metaschemas are the schemas of meta information systems. These systems 
are normally integrated into larger development environments. Meta 
information systems perform functions that are very useful to designers. 
These functions include the following: 

• Maintaining a consistent representation of the schema in the meta 
information base. Conceptual modelers tell the meta information 
processor the changes they want to make to a schema, and the meta 
information processor records them in the meta information base. The 
meta information processor verifies that the schema is correct by 
checking all relevant constraints defined in the metaschema. 

• Providing information about a schema on demand and in the appropriate 
form. 



406      17 Metamodeling 

• Supporting schema validation by generating prototypes, paraphrasing a 
schema in a language understood by the relevant audience, or providing 
additional explanations. 

• Integrating two or more schema fragments. 
• Automatically generating (part of) the system code. 

17.5.5 Conceptual Models versus Metaschemas 

Now that we have examined the concept of metaschemas, let us review the 
terms introduced in Chap. 1 and relate them to the ones used in this 
chapter. 

In Chap. 1, we defined “conceptualization” as the set of concepts used 
in a specific domain, and a “conceptual schema” (or ontology) as the 
specification of a conceptualization in some language. We also defined a 
“conceptual model” as a way to observe domains. 

By analogy, therefore, a metaconceptualization is a set of concepts used 
in conceptualizations. Therefore, a conceptual model is a 
metaconceptualization. A metaconceptualization consists of two essential 
concepts: entity types and relationship types. However, the fact that there 
are many other concepts and variations makes conceptual models highly 
diverse. 

A metaschema is a specification of a conceptual model in a particular 
language. For example, the fragment of the metaschema shown in Fig. 
17.11 specifies, in UML, a fragment of a conceptual model that 
conceptualizes domains in terms of entity types, relationship types, and 
generalizations of entity types. This conceptual model does not include 
integrity constraints, reifications, generalizations of relationship types, or 
attributes. 

When highly precise usage of terms is not required, metaschemas and 
conceptual models may be considered as synonyms.  

17.5.6 The UML Metaschema 

The UML metaschema is a schema that represents general knowledge 
about models that may be defined in UML. The UML metaschema was 
specified and adopted by the Object Management Group (OMG) as a 
standard in 1997. Since then, it has been continuously reviewed and 
improved. The UML metaschema is the reference source that expert 
modelers and meta information processor designers use to clarify the 
meaning of the language constructs. The UML metaschema is very large 
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because UML deals not only with conceptual schemas but also with other 
kinds of software model.  

The UML metaschema includes hundreds of entity types. Figure 17.14 
shows a few of the entity types that are most relevant to conceptual 
modeling, which are: 

• Class. The instances are entity types. 
• DataType. The instances are data types. 
• PrimitiveType. A predefined data type such as Boolean or String. 
• Association. The instances are associations. 
• Property. The instances are attributes of entity types, data types or 

association participants. 
• Classifier. An abstract entity type that groups classes, data types, 

associations and other model elements. 
• Generalization. There is an instance of this entity type for each IsA 

relationship between two classifiers. 
• Constraint. The instances are constraints.  
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• NamedElement. An abstract entity type that groups all model elements 
that have a name. Note that the instances of Generalization have no 
name.  

• Element. An abstract entity type that groups all model elements.  

The two associations between Classifier and Generalization are similar 
to those shown in Fig. 17.11. The association between Constraint and 
Element gives the elements constrained by a constraint. The association 
between Property and Classifier defines the type of the attribute or 
participant. An integrity constraint forces the type to be a Class or a 
DataType. The associations between Class or DataType and Property 
define the attributes of a class or a data type, respectively. Finally, the 
association between Association and Property gives the participants of an 
association. 

The UML metaschema includes many constraints, which are defined 
formally in OCL. For example, one constraint states that a constraint 
cannot be applied to itself. In OCL, 
context Constraint inv cannotBeAppliedToItself: 

not constrainedElement->includes(self) 

17.6 Stereotypes 

17.6.1 Definition 

UML has a mechanism called profiles for adapting metaschemas with 
constructs that are specific to a particular domain, platform, or method. For 
example, a profile for conceptual modeling might consist of constructs for 
defining particular entity types (such as events), associations (such as 
materializations) or constraints (such as permanent). 

A profile consists essentially of one or more stereotypes. A stereotype is 
a class whose instances extend the characteristics defined in a model 
element. These new characteristics are additional information that may be 
used for many different purposes. 

 For example, we can annotate a model element (that is, an instance of 
Element, shown in Fig. 17.14) with the name of the author and the date 
when the element was defined. UML does not provide constructs for 
defining this information. However, we can define a stereotype, which we 
shall call Authorship, using two attributes, author and date, as indicated in 
Fig. 17.15. Stereotypes are defined by means of a class symbol (a 
rectangle) with the keyword «stereotype». The arrow from Authorship (the 
stereotype) to Element indicates that the stereotype applies to instances of 
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Element. We write the keyword «metaclass» above Element to indicate 
that it is an entity type of the metaschema. Each instance of Authorship is 
related to an instance of Element, and the values of its two attributes give 
the author and date of the corresponding element. Each instance of 
Authorship extends the characteristics of an Element. 

To indicate that we want to define the authorship information about an 
element, we write «authorship» above or before the name of the element. 
The values of the attributes can be shown as part of a comment symbol 
connected to the stereotyped element. Figure 17.16 shows an example, in 
which the authorship of the entity type Production is defined.  

The application of the stereotype Authorship to Production is 
understood as the creation of a new instance of a class called Authorship, 

«materializes»
1*

«authorship»
Production

Play
{«permanent»}

«authorship»
author = “Arne”
date = “July 1st. 2006”

Fig. 17.16. Examples of application of stereotypes Authorship, Materializes, 
and Permanent
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which is related to a single instance of Element (Production in this case), 
and whose attributes are additional information about the stereotyped 
element (Production).  

 Materializes is another stereotype shown in Fig. 17.15. Each instance of 
it is related to an association, and it means that the association is a 
realization of the generic relationship type Materializes, which was 
described in Chap. 7. Figure 17.16 shows the application of this stereotype 
to the relationship between Production and Play. In this case, the instances 
of Materializes have no attributes. 

The last example shown in Fig. 17.15 is Permanent. Each instance of it 
is related to a constraint, and it means that the constraint is permanent, 
which was described in Chaps. 2 and 3. Figure 17.16 shows the application 
of this stereotype to the constraint defined in Play. As in the above 
example, the instances of Permanent have no attributes. 

17.6.2 Stereotypes in the Metaschema 

Now we shall describe the placement of stereotypes in the UML 
metaschema. Figure 17.17 shows an adaptation and simplification of the 
fragment of the metaschema that deals with stereotypes.  

Classifier

AssociationProperty Class

{redefines type}

type

*

1

ExtensionExtensionEnd Stereotype

Fig. 17.17. Fragment of the UML metaschema that deals with stereotypes
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Fig. 17.17. Fragment of the UML metaschema that deals with stereotypes
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The stereotypes that we define are instances of Stereotype, which is a 
subtype of Class. Therefore, an instance of Stereotype is a class. Like 
classes, stereotypes may have attributes. The three stereotypes shown in 
Fig. 17.15 are instances of Stereotype, one of which (Authorship) has 
attributes. 

The relationship type between a stereotype and the element that it 
extends is an instance of Extension, a subtype of Association. The three 
associations shown in Fig. 17.15 are instances of Extension. The 
metaschema includes a constraint that requires instances of Extension to be 
binary associations. The constraint is defined in OCL as follows: 
 context Extension inv isBinary: 

self.memberEnd->size()= 2 

One participant of an extension must be a stereotype. The other one 
must be a meta entity type defined in the metaschema. The participant that 
is a stereotype is an instance of ExtensionEnd. Figure 17.17 defines that 
the type of an extension end must be a stereotype. The other participant of 
an extension is an ordinary Property, but its type must be an instance of 
Metaclass. This cannot be shown in Fig. 17.17 because Metaclass is a 
meta meta entity type. The instances of Metaclass are the meta entity types 
of the metaschema. 

An instance R of Extension is a class relationship type because 

Fig. 17.18. Representation in the meta information base of the stereotype Authorship
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• R is a relationship type; and 
• the instances of R are relationships in which one of the participants is an 

entity type. 

Figure 17.18 shows the instantiation of Fig. 17.17 for the stereotype 
Authorship. The stereotype is an instance of Stereotype with the name 
“Authorship”. A stereotype is a class, and a class is a NamedElement, 
whose instances may have a name. Authorship has two attributes named 
author and date, which are both of type String. The instance of Extension 
has two participants (memberEnd). One is an ExtensionEnd and the other 
is a Property. The type of the former is stereotype, whereas the type of the 
latter is Element, which is an instance of Metaclass.  

 Figure 17.19 shows the representation in the meta information base of 
the schema defined in Fig. 17.16. An instance of the stereotype Authorship 
extends the entity type Production. An instance of the stereotype 
Materializes extends the association between Production and Play. An 
instance of Permanent extends the constraint that constrains the entity type 
Play. 

17.7 Bibliographical Notes 

KEE (Fikes and Kehler 1985) and Proteus (Rusinoff 1989) were two of the 
first knowledge representation languages that made it possible to define 
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classification hierarchies of entity types. In the field of conceptual 
modeling of information systems, the first language that provided the 
constructs needed to define unbounded classification hierarchies was Telos 
(Mylopoulos et al. 1990), a successor to RML (Greenspan et al. 1982). The 
ConceptBase system made it possible to define schemas in a variant of 
Telos and manage the corresponding multilevel information base; see 
(Jeusfeld et al. 1998) for an overview of the system. 

Atkinson and Kühne (2001) introduced the concept of a classification 
level (potency). Atkinson et al. (2000) discussed the causes of confusion 
between InstanceOf and IsA and proposed transitivity analysis as a means 
of distinguishing between them. 

Odell (1994) defined powertypes and analyzed their relationship to IsA. 
Dahchour et al. (2002) discussed the relationship between powertypes and 
materialization. 

Motschnig-Pitrik and Mylopoulos (1992) provided a complete survey of 
the various aspects of classification. Martin and Odell (1995, Chap. 22) 
presented an introduction to metamodeling. 

The idea of metaschemas was introduced in an ISO report (Griethuysen 
1982). Since then, many metaschemas have been defined and published. 
One of the most recent was UML 2.1 (OMG 2006a). Bernstein (2003) 
described several functions of meta information systems and presented 
several operators that manipulate schemas. Atzeni et al. (2006) described 
an implementation of ModelGen, an operator that transforms schemas 
from one metaschema to another. 

Gogolla and Henderson-Sellers (2002) analyzed the definition and use 
of stereotypes in UML 1.4. 

17.8 Exercises 

17.1 Visit a website containing the Cyc ontology, and: 

1. Identify a concept that is a meta entity type, and at least two of its 
instances. 

2. Identify a concept that is a meta meta entity type, and at least two of 
its instances. Identify at least two instances of each of these two 
instances. 

3. Identify a concept that is a meta relationship type and at least two of 
its instances. 
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17.2 In general, we cannot infer from A IsA B and B InstanceOf C that A 
InstanceOf C. However, there are particular cases in which such an 
inference would be valid. Give an example. 

 
17.3 Consider a system that records information about the employees of a 
company. Each employee has a name and a category. There are three 
categories of employee: Salesperson, Engineer, and Manager. Each 
category has a different salary and weekly working hours. All employees 
of a given category have the same salary and weekly working hours. A 
salesperson sells a set of products. An engineer works on a set of projects. 
A manager manages a set of projects. Design the structural schema of this 
system in two variants: with and without powertypes. Each variant should 
include all relevant constraints, expressed in OCL if needed. Compare the 
two variants. 
 
17.4 Give the instantiation of the UML metaschema indicated in Fig. 17.14 
that corresponds to the relationship type (association) shown at the top of 
Fig. 17.12. 

 
17.5 Find out the placement of the association classes in the current 
version of the UML metaschema and extend Fig. 17.14 to deal with them. 



18 The MOF and XMI 

Just as a schema is an instance of a metaschema, so is a metaschema an in-
stance of a meta-metaschema. Meta-metamodeling is concerned with the 
definition and use of meta-metaschemas. The best-known meta-
metaschema is the Meta-Object Facility (MOF), which is introduced in 
Sect. 18.1. Many metaschemas can be defined as an instance of the MOF. 
However, the MOF can also be used as a conceptual model (that is, a me-
taschema) for a restricted subset of schemas, as we show in Sect. 18.2.  

The MOF is also the basis of XML Metadata Interchange (XMI), an im-
portant standard that enables the exchange of data about schema instances 
(entities and relationships) between systems and, in particular, the ex-
change of schemas between conceptual modeling tools. We examine XMI 
in Sect. 18.3. In that section, we assume that the reader has an elementary 
knowledge of XML. 

18.1 Meta-Metaschemas 

18.1.1 Definition 

We know that a schema is a representation of general knowledge about a 
domain. In the preceding chapter, we saw that a metaschema is a schema 
that represents general knowledge about a domain consisting of a schema. 
If we move up a level, we find meta-metaschemas. A meta-metaschema is 
a schema that represents general knowledge about a domain consisting of a 
metaschema. 

Figure 18.1, an extension of Fig. 17.10, shows the difference between a 
metaschema and a meta-metaschema. A meta-meta information system 
(MMIS) is a system that, in addition to other functions, contains a repre-
sentation of a metaschema (MS). The upper right-hand part of Fig. 18.1 
shows the three components of MMIS: 
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• The information base (MMIB), which contains a representation of MS. 
• The conceptual schema (MMS), which contains a representation of the 

general knowledge about the domain consisting of the MS. MMS is the 
metaschema of MS, and MS is an instance of MMS. 

• The processor (MMIP), which receives external messages and changes 
MMIB and/or produces an output. 

Figure 18.1 also shows a relationship between MS and MMIB, indicating 
that the instances and relationships in MS are represented by symbols in 
MMIB. By virtue of this relationship, there is a correspondence between 
MS and MMIB. MS and MMS may be written in the same language or a 
different language.  

Fig. 18.1. Relationships between a meta-meta information system and a meta 
information system
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18.1.2 The MOF 

The best-known meta-metaschema is the Meta-Object Facility (MOF) 
specified by the OMG. The MOF acts as a meta-metaschema for several 
metaschemas (it corresponds to MMS in Fig. 18.1). The UML metaschema 
is an instance of the MOF, but the metaschema of other languages can also 
be defined as an instance of the MOF. 

The MOF reuses a subset of UML concepts that makes the MOF a 
stand-alone conceptual modeling language (a metaschema) that is suitable 
for certain applications. We shall describe this use of the MOF in Sect. 
18.2. 

The MOF is also the basis of XMI, a widely used standard that is de-
scribed in Sect. 18.3. 

The MOF is much smaller than the UML metaschema, but it is still too 
large to be covered in this book. Instead, we shall describe a simplified 
version of it that provides an intuitive understanding of its relationship 
with the UML metaschema and its role in XMI. 

Figure 18.2 shows the simplified version of the MOF that will be used 
in this chapter. In this section, we describe the main relationships between 
the simplified MOF and the UML metaschema. We illustrate these rela-

Fig. 18.2. Simplified version of the MOF
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tionships using the fragment of the UML metaschema (Fig. 18.3) that deals 
with generalizations, generalization sets, and powertypes. 

Instances of Class in the MOF are entity types in the metaschema. 
These types have a name and may be abstract. Figure 18.3 shows five in-
stances of Class, whose names are as follows: “Classifier”, “Class”, “As-
sociation”, “Generalization”, and “GeneralizationSet”. Of these, only the 
first is abstract (isAbstract = True). This is shown by writing the name in 
italics. Classifier, Class, and Association occur both in the MOF and in the 
metaschema, but they are different concepts. For example, instances of 
Class in the MOF are entity types in the UML metaschema, while in-
stances of the UML metaschema Class are entity types in UML schemas. 

The five instances of Class shown in Fig. 18.3 are types, because they 
may have instances in a schema. For example, the IsA relationships that 
exist in a schema are instances of Generalization. 

Instances of the MOF recursive association subclass–superclass are IsA 
relationships in the metaschema. Figure 18.3 shows two examples: Class 
IsA Classifier and Association IsA Classifier. 

Instances of Association in the MOF are binary relationship types in the 
metaschema. These types also have a name. Figure 18.3 shows four in-
stances of this Association, whose names (not shown in the figure) are as 
follows: “general–generalization”, “specific–generalization”, “powertype–
powertypeExtent”, and “generalizationSet–generalization”.  

A relationship type in the metaschema involves three instances of MOF 
types. One is an instance of Association, and the other two are instances of 
Property. The names of the instances of Property are the names of the par-
ticipants in the relationship type, and the values of the attributes lower and 
upper give the minimum and maximum cardinalities of the participants. If 
the value of the attribute isComposite is true, then the association is a 
composition. 

Fig. 18.3. Fragment of the UML metaschema
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For example, consider the relationship type specific–generalization in 
Fig. 18.3. This type is an instance of Association in the MOF. Each of its 
two participants is an instance of Property in the MOF, whose names are 
“specific” and “generalization”, respectively. The values of the lower and 
upper attributes of the first property are both 1. The value of the isCompo-
site attribute of the first property is true. The value of the lower attribute of 
the second property is 0, while that of upper is unlimited. The value of the 
isComposite attribute of the second property is false. 

An instance a of Property that is an ownedAttribute of an instance c of 
Class and whose Property::type is the Classifier t is an attribute of c of 
type t in the metaschema. The name of the attribute a is the value of a for 
the attribute Property::name. Figure 18.3 shows two examples: the attrib-
utes GeneralizationSet::isCovering and GeneralizationSet::isDisjoint. Both 
are of Boolean type, which is an instance of PrimitiveType. 

The instances of Comment are the comments that form part of the UML 
metaschema specification. Each comment annotates named elements of the 
metaschema. For example, the UML metaschema specification includes 
the following comment: 

Each Generalization is a binary relationship that relates a specific Classifier to a 
more general Classifier (i.e., from a class to its superclasses). Each Generaliza-
tionSet defines a particular set of Generalization relationships that describe the 
way in which a general Classifier (or superclass) may be divided using specific 
subtypes (…) 

This string is the value of the attribute body of an instance of Comment in 
the MOF that annotates the instance of NamedElement in the MOF that 
corresponds to GeneralizationSet in the UML metaschema. 

The instances of Constraint in the MOF are the constraints of the UML 
metaschema. Each constraint constrains a number of metaschema ele-
ments. For example, the UML metaschema includes the following con-
straint: 

Every Generalization associated with a particular GeneralizationSet must have 
the same general Classifier. 

This constraint is an instance of Constraint in the MOF that constrains the 
instance of Element in the MOF that corresponds to GeneralizationSet in 
the UML metaschema. 



420      18 The MOF and XMI 

18.2 The MOF as a Conceptual Modeling Language 

We have just seen that the MOF is a meta-metaschema, that is, a schema 
whose instances are metaschemas. However, since a metaschema is also a 
schema, a question naturally arises: can the MOF be used as a me-
taschema? Or, given that a metaschema is a conceptual modeling lan-
guage, can the MOF be used as a conceptual modeling language? 

The answer is both yes and no: the MOF can be used as a conceptual 
modeling language for some fragments of a schema, such as the one shown 
in Fig. 18.4, but it cannot be used as a conceptual modeling language for 
full-fledged information system schemas, because it lacks important fea-
tures, such as association classes and state transition diagrams. 

In this section, we briefly present the use of the MOF as a conceptual 
modeling language and describe some of its limitations.  

In general, the MOF can define many (but not all) structural schemas 
that consist of entity types, data types, attributes, associations, etc. Figure 
18.4 shows an example of a schema that can be fully expressed in the sim-
plified version of the MOF shown in Fig. 18.2: 

• Book, OriginalBook, TranslatedBook, and Person are instances of 
Class. The value of the attribute isAbstract of Book is true, whereas it is 
false in the other three classes. 

• String is an instance of PrimitiveType. 
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• ISBN is an instance of DataType. 
• The relationships OriginalBook IsA Book and TranslatedBook IsA Book 

are instances (links) of the MOF association subClass–superClass. 
• The three associations WrittenBy, TranslatedBy, and original–

translation are instances of Association in the MOF. The participant en-
tity types are given by the instances of the association property–type of 
the corresponding instances of Property. The role names and multiplic-
ities are the values of the name, lower, and upper attributes of the corre-
sponding instances of Property. 

• Similarly, the three attributes of Book, the attribute of Person, and the 
four attributes of ISBN are instances of Property. 

However, many elements of complete information system schemas can-
not be expressed as instances of MOF elements. These include: 

• n-ary associations. The instances of Association in the MOF must be 
binary. 

• Association classes. The MOF includes no concept (classifier) whose 
instances are both a class and an association. 

• The covering and disjointness constraints on IsA relationships. The 
MOF includes no type whose instances are these particular classes of 
constraint. However, they can be expressed as general constraints (see 
Exercise 18.3). 

• Use cases. The MOF includes no concept whose instances are use cases 
(such as Add a new book or Give the translators of a book). 

• State transition diagrams. 

18.2.1 The MOF as an ω-metaschema 

In the preceding chapter, we explained that there are types, called ω-types, 
whose instances have several classification levels. The MOF is akin to an 
ω-type and can be considered as an ω-metaschema. An instance of the 
MOF may be a metaschema (as described in Sect. 18.1.2) or a schema (as 
described above). In fact, the MOF can be defined as an instance of itself. 
The left-hand side of Fig. 18.5 shows the complete MOF/UML instantia-
tion hierarchy; the right-hand side shows some examples of elements in 
each layer. 
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18.3 XMI 

A schema defines the types of entities and relationships that exist in a do-
main, in addition to a number of other things. However, a schema does not 
define how specific entities and relationships should be physically repre-
sented. For example, a schema may define that a domain includes the types 
OriginalBook, Person, and WrittenBy, but it does not define how to physi-
cally represent the fact that the book entitled Brave New World was written 
by the person named Aldous Huxley. 

Each information system stores and displays entities and relationships in 
the formats chosen by its designers and users. Two different systems with 
the same schema may represent particular entities and relationships in dif-
ferent formats.  

When two or more systems need to exchange data about particular enti-
ties and relationships, their designers must reach a twofold agreement on 
the types of entities and relationships of interest, and on how to format the 
data about the instances of these types. The agreement on the types (that is, 
on the schema) is unavoidable, and it is documented using a conceptual 
modeling language such as UML. The agreement on the format would be 
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unnecessary if there were a standard way of formatting data about the in-
stances of types.  

UML uses object diagrams, which can show particular entities with their 
attributes and associations, as described in Sect. 3.2.3. However, this is not 
practical for exchanging data about many entities. Furthermore, the 
graphical characteristics of the diagrams are not standardized. 

XML Metadata Interchange (XMI) is an OMG standard for representing 
data about instances of types of MOF schemas in XML. Using XMI, two 
systems that share the same MOF schema can exchange data about its in-
stances in a standard way, and no further explicit agreement is required.  

Since an MOF schema may be a schema or a metaschema, XMI can 
serve two different purposes: to represent instances of the entities and rela-
tionships that exist in a domain, or to represent schemas. Taking the 
schema example of Fig. 18.4, XMI can be used to represent specific in-
stances of OriginalBook, TranslatedBook, Person, their attributes and as-
sociations, or the schema itself.  

A complete presentation of XMI and its applications is worthy of a book 
of its own. In the next section, we describe only the essentials of XMI, 
which should provide an intuitive understanding of it and of its use in con-
ceptual modeling. 

18.3.1 XMI Representation of Entities and Relationships 

XMI uses a set of rules to represent instances of MOF schemas in XML. In 
this section, we introduce these rules and use them to represent a few in-
stances of the entity types shown in the schema in Fig. 18.4. Figure 18.6 
shows the XMI representation.  

The overall structure of an XML document that represents entities and 
their relationships is 
<xmi:XMI xmi:version = “2.1”  
       xmlns:xmi = “http://www.omg.org/XMI”> 
<!-- Entities and their relationships --> 
</xmi:XMI> 

The XML element XMI is the root element of the XML document. This 
element has two attributes: version, which must have the value of the ver-
sion of the XMI standard used (in this case, 2.1), and xmlns, which de-
clares the xmi namespace. Other namespaces may be declared as well. 

Each entity e (that is, each instance e of an instance E of Class in the 
MOF) is represented by an XML element. The tag name of the element is 
the name of E (the class of e). In Fig. 18.6, there is one instance of Origi-
nalBook, two instances of TranslatedBook, and three instances of Person. 
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XMI uses three attributes to identify XML elements so that they may be 
associated with each other. The most important (and the only one de-
scribed here) is the attribute id, which has the type ID. The XML seman-
tics requires that the values of this attribute be unique within an XML 
document. In the present example, the single instance of OriginalBook has 
an attribute id with a value B1. 

The attribute values of an entity are normally represented using XML 
attributes in the corresponding XML element. However, they can also be 
represented by nested XML elements whose tag name is the name of the 
attribute. When the attribute is multivalued or has a null value, the value 
must be represented by an XML element.  

In the example, we declare that the original book B1 has the title Brave 
New World and is written in English. The value of the attribute ISBN of 
books B1 and B3 is unknown and is represented by a nested XML element 
whose tag name is isbn:  

<isbn nil = “true”/> 
Figure 18.4 defines that the type of the attribute isbn is ISBN, a data type 

with attributes. In order to preserve the ability to represent data types in 
XML as simple strings, the value of a data type with attributes is repre-

<xmi:XMI xmi:version = “2.1” 
xmlns:xmi =  “http://www.omg.org/XMI”>

<OriginalBook xmi:id = “B1” title = “Brave new world” 
language = “english” author = “P1” 
translation = “B2 B3”>

<isbn nil = “true”/>
</OriginalBook>
<TranslatedBook xmi:id = “B2” title = “Un món feliç” 

isbn = “84,7279,124,6” language = “catalan” 
translator = “P2” original = “B1” />

<TranslatedBook xmi:id = “B3” title = “Un mundo feliz” 
language = “spanish” translator = “P3” 
original = “B1”>
<isbn nil = “true”/>

</TranslatedBook>
<Person xmi:id = “P1” name = “Aldous Huxley” 

originalBook = “B1”/>
<Person xmi:id = “P2” name = “Ramon Folch”

translatedBook = “B2”/>
<Person xmi:id = “P3” name = “Ramón Hernández”

translatedBook = “B3”/>
</xmi:XMI> 

Fig. 18.6. XMI representation of some instances of the schema in Figure 18.4

<xmi:XMI xmi:version = “2.1” 
xmlns:xmi =  “http://www.omg.org/XMI”>

<OriginalBook xmi:id = “B1” title = “Brave new world” 
language = “english” author = “P1” 
translation = “B2 B3”>

<isbn nil = “true”/>
</OriginalBook>
<TranslatedBook xmi:id = “B2” title = “Un món feliç” 

isbn = “84,7279,124,6” language = “catalan” 
translator = “P2” original = “B1” />

<TranslatedBook xmi:id = “B3” title = “Un mundo feliz” 
language = “spanish” translator = “P3” 
original = “B1”>
<isbn nil = “true”/>

</TranslatedBook>
<Person xmi:id = “P1” name = “Aldous Huxley” 

originalBook = “B1”/>
<Person xmi:id = “P2” name = “Ramon Folch”

translatedBook = “B2”/>
<Person xmi:id = “P3” name = “Ramón Hernández”

translatedBook = “B3”/>
</xmi:XMI> 

Fig. 18.6. XMI representation of some instances of the schema in Figure 18.4
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sented as a single string, with the values of the attributes of the data type 
separated by a comma. Figure 18.6 shows an example in the value of the 
attribute isbn of book B2. 

Let R(p1:E1,p2:E2) be a binary relationship type defined as a UML asso-
ciation. In XMI, the instances of R are normally represented by two XML 
attributes of type IDREFS: one with a name p2 in the XML element corre-
sponding to an instance of E1, and the other with a name p1 in the element 
corresponding to an instance of E2. The value of each attribute consists of 
the identifiers of the XML elements corresponding to the referenced enti-
ties, separated by spaces. 

In the example, we declare that the author of book B1 is P1, and that its 
translations are the books B2 and B3. We also declare that B1: 

• is the originalBook of P1, 
• is the original of B2, and 
• is the original of B3.  

When the association is a composition, the representation is somewhat 
different, as described in the next section. 

18.3.2 XMI Representation of UML Schemas 

XMI rules can be applied to obtain an XML representation of any set of 
instances of entity types, attributes and associations of any schema whose 
entity types, attributes, and associations are instances of the corresponding 
MOF classes. 

Since the UML metaschema is a schema whose entity types, attributes 
and associations are instances of the corresponding MOF classes, the in-
stances of the UML metaschema can be represented using XMI. That is, 
we can use XMI rules to achieve a standard XML representation of UML 
schemas. Representing UML schemas in a standard format is of the utmost 
importance because it enables system interoperability. Many development 
tools for conceptual modeling allow schemas to be imported and exported 
from and to XMI. 

In this section, we illustrate the XMI representation of UML schemas by 
applying XMI rules to an example. The example is the schema shown in 
Fig. 18.4. This schema is an instance of the UML metaschema that we 
studied in the preceding chapter. For convenience, Fig. 18.7 shows a frag-
ment of this metaschema. 

The overall document structure is 
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<xmi:XMI xmi:version = “2.1”  
   xmlns:xmi = “http://www.omg.org/XMI” 
   xmlns:cmof=“http://schema.omg.org/spec/MOF/2.0/cmof.xml”> 
… UML schema (see below) … 
</xmi:XMI> 
 

The ISBN data type and its four attributes (Fig. 18.4) are instances of 
DataType and Property, respectively (Fig. 18.7). Therefore, the XMI rep-
resentation of the ISBN data type is 
<DataType xmi:id = “D1” name = “ISBN”> 

 <ownedAttribute xmi:id = “A1” name = “country” lower = 1 
         upper = 1 isComposite = “false”> 
    <type xmi:type="cmof:PrimitiveType" 
         href="doc#Core-PrimitiveTypes-Integer"/> 
 </ownedAttribute> 
 <ownedAttribute xmi:id = “A2” name = “publisher”  
         lower = 1 upper = 1 isComposite = “false”> 
    <type xmi:type="cmof:PrimitiveType" 
         href="doc#Core-PrimitiveTypes-Integer"/> 
 </ownedAttribute> 
 <ownedAttribute xmi:id = “A3” name = “itemNumber”  
         lower = 1 upper = 1 isComposite = “false”> 
    <type xmi:type="cmof:PrimitiveType" 
         href="doc#Core-PrimitiveTypes-Integer"/> 
 </ownedAttribute> 
 <ownedAttribute xmi:id = “A4” name = “checksum”  
         lower = 1 upper = 1 isComposite = “false”> 
    <type xmi:type="cmof:PrimitiveType" 
         href="doc#Core-PrimitiveTypes-Integer"/> 
 </ownedAttribute> 

</DataType> 

In Fig. 18.7, the association dataType–ownedAttribute is a composition. 
In this case, the XMI rules state that the part entities are defined as nested 
elements inside the composite element. The tag name of these elements is 
the name of the part role. In UML, the parts of a composite cannot belong 
to two composites at the same time. In the example above, D1 is the whole 
of the parts A1, A2, A3, and A4, which are defined inside the XML element 
D1. The name of the part role is ownedAttribute. 

When the entity to which an entity is related is defined in another XML 
document, it must be represented by a nested XML element. One example 
is the type of the four ISBN attributes. They have been represented using 
the following XML element: 

<type …  href="doc#Core-PrimitiveTypes-Integer"/> 

This declares that the type is the XML element with the identifier Core-
PrimitiveTypes-Integer located in the XML document doc.  

According to Fig. 18.7, the type of a Property is an instance of Classi-
fier. However, since Classifier is an abstract class, we have to specify the 
subclass of which it is an instance. The XML attribute xmi:type indicates 
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that the type of the attribute is an instance of PrimitiveType, a subclass of 
Classifier:  

<type xmi:type = “comof:PrimitiveType” 
   href="doc#Core-PrimitiveTypes-Integer"/> 

Similarly, the XMI representation of Book is 
<Class xmi:id = “B1” name = “Book” isAbstract = “true”> 

 <ownedAttribute xmi:id = “A5” name = “title” lower = 1 
         upper = 1 isComposite = “false”> 
    <type xmi:type="cmof:PrimitiveType" 
         href="doc#Core-PrimitiveTypes-String"/> 
 </ownedAttribute> 
 <ownedAttribute xmi:id = “A6” name = “isbn”  
         lower = 0 upper = 1 isComposite = “false”> 
    <type xmi:type="cmof:DataType" href="#D1"/> 
 </ownedAttribute> 
 <ownedAttribute xmi:id = “A7” name = “language”  
         lower = 1 upper = 1 isComposite = “false”> 
    <type xmi:type="cmof:PrimitiveType" 
         href="doc#Core-PrimitiveTypes-String"/> 
 </ownedAttribute> 

</Class> 

The type of the attribute isbn is the instance of DataType that we have 
specified in the same document with identifier D1. 

The XMI representation of Person is simple: 

Fig. 18.7. Fragment of the UML metaschema (simplified)
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<Class xmi:id = “P1” name = “Person” isAbstract = “false”> 
 <ownedAttribute xmi:id = “A8” name = “name” lower = 1 
         upper = 1 isComposite = “false”> 
    <type xmi:type="cmof:PrimitiveType" 
         href="doc#Core-PrimitiveTypes-String"/> 

 </ownedAttribute> 
</Class> 

The XMI representation of OriginalBook and TranslatedBook and their 
generalization into Book is 
<Class xmi:id = “B2” name = “OriginalBook”  
    isAbstract = “false”> 
  <generalization xmi:id = “G1” general = “B1”/> 
</Class> 
<Class xmi:id = “B3” name = “TranslatedBook”  
    isAbstract = “false”> 
  <generalization xmi:id = “G2” general = “B1”/> 
</Class> 

The three associations are 
<Association xmi:id = “As1” name = “WrittenBy”  
   memberEnd = “Pr1 Pr2”/> 
<Association xmi:id = “As2” name = “TranslatedBy”  
   memberEnd = “Pr3 Pr4”/> 
<Association xmi:id = “As3” name = “original-translation”  
   memberEnd = “Pr5 Pr6”/> 
<Property xmi:id = “Pr1” name = “originalBook”  

   lower = 0 upper = * isComposite = “false”  
  type = “B2” association = “As1”/> 

<Property xmi:id = “Pr2” name = “author”  
   lower = 1 upper = * isComposite = “false”  
  type = “P1” association = “As1”/> 

<Property xmi:id = “Pr3” name = “translatedBook”  
   lower = 0 upper = * isComposite = “false”  
  type = “B3” association = “As2”/> 

<Property xmi:id = “Pr4” name = “translator”  
   lower = 1 upper = * isComposite = “false”  
  type = “P1” association = “As2”/> 

<Property xmi:id = “Pr5” name = “original”  
   lower = 1 upper = 1 isComposite = “false”  
  type = “B2” association = “As3”/> 

<Property xmi:id = “Pr6” name = “translation”  
   lower = 0 upper = * isComposite = “false”  
  type = “B3” association = “As3”/> 

18.4 Bibliographical Notes 

The current official description of the MOF is that given by the OMG 
(2006b). The latest version of the XMI standard is also defined by the 
OMG (2005a). Grose et al. (2002) provided a detailed explanation of XMI 
and its applications. 
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18.5 Exercises 

18.1 Figure 18.8 shows the fragment of the UML metaschema that defines 
the association classes: an instance of an association class is both a class 
and an association. Explain how this fragment is an instance of the simpli-
fied MOF shown in Fig. 18.2. 

 
18.2 Assume that the schema fragment shown in Fig. 18.4 also includes 
the following constraint: “The language of a translated book must be dif-
ferent from that of its original.” Explain how this constraint is an instance 
of the simplified MOF shown in Fig. 18.2. 

 
18.3 Assume that you are using the MOF as a conceptual modeling lan-
guage in a schema that includes the specializations A IsA B and C IsA B, 
and that you want to define A and C as disjoint. Define this constraint in 
OCL and explain how it is an instance of Constraint in the MOF. 

 
18.4 Use an UML object diagram to represent the entities and relationships 
whose XMI representations are given in Fig. 18.6. Compare the two repre-
sentations in terms of human and machine readability. 
 
18.5 Since the MOF is an instance of itself, the MOF can be represented in 
XMI. Write the XMI representation of the simplified MOF shown in Fig. 
18.2.

Fig. 18.8. Fragment of the UML metaschema that defines association classes
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constraint 

N 

Natural, 55 
NIAM, 120, 133, 243 
nominalization. See reification 

O 

object, 10 
object diagram, 50, 73, 78, 423, 429 
object system. See domain 
OCL, 157, 179, 268 

body clause, 164 
context clause, 163 
derive clause, 163 
invariant clause, 192 
postcondition clause, 262 

OMG, 34 
OMT, 322 
ontological commitment, 11 
ontology, 10, 35 
OOA, 322 
OO-Method, 178, 350 
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Orion, 154 
ORM, 76, 80, 133, 178, 207 
OSA, 80, 273, 322 
overlapping, 219 

P 

Partd, 222 
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refinement, 232 
refinement in UML, 233 

participation, 84 
mandatory, 84 
maximal, 96, 99 
optional, 84 
partial, 84, 86, 92 
total, 84, 86, 92 

partition, 222, 227 
part–whole relationship, 154 

aggregation, 142 
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meronym, 142 
UML representation, 142 

part–whole relationship, 141 
pattern sentence. See relationship 

type 
perfect-technology assumption, 278 
Petri net, 273 
philosophy (in relation to part–

whole relationship types), 154 
pivoting. See reification, partial 
PositiveInteger, 55 
postcondition, 263, 264, 307 

frame problem, 265 
powertype, 393, 413 
precondition, 262, 307 
processor 

external, 23 
information, 25 
internal, 26 

profile, 408 
propositional logic, 10 
Proteus, 412 
protocol state machine, 306 
PSA, 31 
pseudostate 

choice, 314 
fork, 332 
initial, 328, 331 
join, 333 
junction, 312 

PSL, 31 
PSN, 33 

Q 

query, 5, 17, See also action request 
event 

Query, 281 
query effect, 285 

UML representation, 285 

R 

readOnly, 77 

realization constraint. See generic 
relationship type 

real-time system, 8 
reference, 42, 103, 120 

compound, 105, 120, 125, 197 
immutable, 104, 105, 107 
mutable, 104, 105, 107 
set, 106 
simple, 104, 120, 125, 197 

referential constraint, 69, 138 
region, of orthogonal state, 329 
reification, 123–34 

and specialization, 242 
implicit, 127 
partial, 130 
temporal, 133 
UML representation of, 126 

relationship, 10, 13, 60 
deletion, 249 
insertion, 249 
logical representation, 69 
tabular representation, 73 
XMI representation, 423 

relationship fact, 69 
relationship type, 13, 59–81, 397, 
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antisymmetric, 203 
asymmetric, 203 
asynchronous, 62 
base, 157 
base redefined as derived, 238 
binary, 63 
completeness, 74, 80 
constant, 67 
constant with respect to a 

participant, 67 
constant, derived, 173 
correctness, 75, 80 
decomposition, 113, 117, 119, 

120, 130 
degree, 63, 119 
derived, 157–79 
derived by exclusion, 171 
derived by specialization, 170 
derived by union, 168 
derived, justification, 176 
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elementary, 111, 120 
existence dependency, 86, 121, 
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explicit pattern sentence, 63 
generic, 137–55 
hybrid, 159 
hybrid, UML representation, 176 
implicit pattern sentence, 63 
intransitive, 203 
intrinsic, 124, 133 
irreflexive, 204 
logical representation, 69 
name, 63 
name of role, 64 
n-ary, 63 
participant, 60 
participant refinement, 229, 244 
pattern sentence, 63 
permanent, 67 
permanent with respect to a 

participant, 67 
population, 13, 16, 21, 66, 248 
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recursive, 61, 82, 87 
recursive, constraints, 202 
redundant, 75, 80 
reference, 103 
refinement, 229 
reflexive, 204 
reified. See reification 
role, 60 
satisfiable, 75 
schema, 60 
subsumption, 68 
subtype, 68 
symmetric, 203 
synchronous, 62 
ternary, 63, 117 
transitive, 203 
UML representation, 70 
unary, 66 

REMORA, 272 
representation relationship, 401 
request. See action request event 
request event, mapping to call 

events, 315 

requirement, 2 
functional, 28 
nonfunctional, 28 

requirements elicitation, 27 
requirements engineering, 27, 35 
requirements specification, 27 
requirements validation, 28 
RML, 34 
role, 147, 154, 214 

UML representation, 149 
ROOM, 273 
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SADT, 31 
scenario. See use case 
schema. See also conceptual schema 

external, 23, 24 
internal, 26 

schema transformation 
implicit reification, 129 

SDM, 178, 207 
semantic data model, 32, 36 
sequence diagram. See use case 
signal event, 307 
source state, 299 
specialization, 213 

multiple, 215 
of event types, 295 
single, 215 
UML representation, 215 

specialization/generalization, 213–
44 
of actors, 338 
of use cases, 345 

SSADM, 273 
stakeholder, 338 
state 

allowed, 305 
AND decomposition, 331 
composite, 327, 330 
default, 331 
final, 312 
hierarchy, 325 
initial, 311 
legal sequence, 305 
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name, 302 
OR decomposition, 331 
orthogonal, 329 
parallelism, 329 
simple, 327 
simple composite, 327, 329 

state configuration, 327, 330 
active, 327 

state machine, 299–322 
state transition diagram, 299–322, 

325, 421 
UML representation, 306 

state transition, conflict, 329, 332 
statechart, 325–34 

specialization, 334 
stereotype, 49, 408 

constant, 49, 72, 77 
create, 291 
event, 256 
IC, 193 
iniIC, 205 
IsMemberOf, 147 
IsRoleOf, 149 
Materializes, 152, 410 
metaclass, 393 
permanent, 49, 72, 77, 410 
type, 49 
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String, 55 
structural event, 16, 248, 266, 268, 
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structural event type, 250 

derivability, 250 
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of permanent relationship type, 
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structural schema, 10 
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types, 271 

of osCommerce, 354 
structured analysis, 31, 272 
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property string in UML, 199 

symbol 
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representing a domain object, 46, 
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Syntropy, 273 
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target state, 299 
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taxonomy, 213–44 

of event types, 284 
Telos, 34, 413 
temporal request event, 303 
Time, 55 
time event, 307, 310 
transition 

enabled, 304 
firing, 304, 332 
self-transition, 299 
trigger, 304 

transitive closure, 173 
trigger, 304 
Type, 387 
type configuration, valid, 223, 244 

U 

UML, 11, 34, 36, 406, 413 
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Unified Modeling Language. See 

UML 
union, 168 
universe of discourse. See domain 
use case, 337–50, 421 

actor, 339 
association of, with actor, 340 
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event types, 346 
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essential, 340, 346, 350 
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extension, 342 
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350 

model, 345 
name, 339 
precondition, 341 
real, 340 
scenario, 339 
scope, 341 
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UML representation of, 339 
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w-type, 387, 421 

X 
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